SEARCH

SEARCH BY CITATION

References

  • Alphei, J., Bonkowski, M., and Scheu, S. (1996) Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106: 111126.
  • Bongers, T. (1988) De nematoden van Nederland. Utrecht, the Netherlands: K.N.N.V.
  • Bonkowski, M. (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162: 617631.
  • Borcard, D., and Legendre, P. (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153: 5168.
  • Borcard, D., Legendre, P., Avois-Jacquet, C., and Tuomisto, H. (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 18261832.
  • Ter Braak, C.J.F., and Šmilauer, P. (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination, Version 4.5. Ithaca, NY, USA: Microcomputer Power.
  • Curtis, T.P., Sloan, W.T., and Scannell, J.W. (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99: 1049410499.
  • Demoling, F., Figueroa, D., and Bååth, E. (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39: 24852495.
  • Dray, S., Legendre, P., and Peres-Neto, P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196: 483493.
  • Eyualem, A., Decraemer, W., and De Ley, P. (2008) Global diversity of nematodes (Nematoda) in freshwater. Hydrobiologia 595: 6778.
  • Fierer, N., and Jackson, R.B. (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103: 626631.
  • Finlay, B.J. (2002) Global dispersal of free-living microbial eukaryote species. Science 296: 10611063.
  • Frostegård, A., and Bååth, E. (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22: 5965.
  • Frostegård, A., Bååth, E., and Tunlid, A. (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biol Biochem 25: 723730.
  • Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L., and Brown, J.H. (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA 105: 77747778.
  • Fulthorpe, R.R., Roesch, L.F.W., Riva, A., and Triplett, E.W. (2008) Distantly sampled soils carry few species in common. ISME J 2: 901910.
  • Gans, J., Wolinsky, M., and Dunbar, J. (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 13871390.
  • Gaston, K.J. (2000) Global patterns in biodiversity. Nature 405: 220227.
  • Grayston, S.J., Wang, S., Campbell, C.D., and Edwards, A.C. (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30: 369378.
  • Griffiths, B.S., Bonkowski, M., Dobson, G., and Caul, S. (1999) Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43: 297304.
  • Heuer, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E. (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63: 32333241.
  • Horner-Devine, M.C., Lage, M., Hughes, J.B., and Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature 432: 750753.
  • Kielak, A., Pijl, A.S., Van Veen, J.A., and Kowalchuk, G.A. (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol 63: 372382.
  • Kowalchuk, G.A., Buma, D.S., De Boer, W., Klinkhamer, P.G.L., and Van Veen, J.A. (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81: 509520.
  • Kreuzer, K., Adamczyk, J., Iijima, M., Wagner, M., Scheu, S., and Bonkowski, M. (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol Biochem 38: 16651672.
  • Legendre, P., and Legendre, L. (1998) Numerical Ecology. Amsterdam, the Netherlands: Elsevier Science B.V.
  • Lozupone, C.A., and Knight, R. (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104: 1143611440.
  • Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., et al. (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4: 102112.
  • Mayer, W., Herrmann, M., and Sommer, R. (2007) Phylogeny of the nematode genus Pristionchus and implications for biodiversity, biogeography and the evolution of hermaphroditism. BMC Evol Biol 7: 104.
  • Oostenbrink, M. (1960) Estimating nematode populations by some selected methods. In Nematology. Sasser, J.N., and Jenkins, W.R. (eds). Chapel Hill, NC, USA: The Universita of North Carolina Press, pp. 85102.
  • Peres-Neto, P.R., Legendre, P., Dray, S., and Borcard, D. (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 26142625.
  • Ramette, A., and Tiedje, J.M. (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci USA 104: 27612766.
  • De Ridder-Duine, A.S., Kowalchuk, G.A., Gunnewiek, P., Smant, W., Van Veen, J.A., and De Boer, W. (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37: 349357.
  • De Ruiter, P.C., Neutel, A.M., and Moore, J.C. (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269: 12571260.
  • Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., et al. (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67: 47424751.
  • Tan, K.H. (2005) Soil Sampling, Preparation and Analysis. Boca Raton, FL, USA: CRC Press.
  • Torsvik, V., Goksoyr, J., and Daae, F.L. (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56: 782787.
  • Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., Van Der Putten, W.H., and Wall, D.H. (2004) Ecological linkages between aboveground and belowground biota. Science 304: 16291633.
  • Whitaker, R.J., Grogan, D.W., and Taylor, J.W. (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301: 976978.
  • Yeates, G.W., Bongers, T., De Goede, R.G.M., Freckman, D.W., and Georgieva, S.S. (1993) Feeding-habits in soil nematode families and genera – an outline for soil ecologists. J Nematol 25: 315331.
  • Yergeau, E., Newsham, K.K., Pearce, D.A., and Kowalchuk, G.A. (2007a) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9: 26702682.
  • Yergeau, E., Bokhorst, S., Huiskes, A.H.L., Boschker, H.T.S., Aerts, R., and Kowalchuk, G.A. (2007b) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59: 436451.
  • Yergeau, E., Schoondermark-Stolk, S.A., Brodie, E.L., Déjean, S., DeSantis, T.Z., Gonçalves, O., et al. (2009a) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3: 340351.
  • Yergeau, E., Labour, K., Hamel, C., Vujanovic, V., Nakano-Hylander, A., Jeannotte, R., and St-Arnaud, M. (2009b) Patterns of Fusarium community structure and abundance in relation to spatial, abiotic and biotic factors. FEMS Microbiol Ecol (in press): doi: 10.1111/j.1574-6941.2009.00777.x.
  • Zhou, J.Z., Kang, S., Schadt, C.W., and Garten, C.T. (2008) Spatial scaling of functional gene diversity across various microbial taxa. Proc Natl Acad Sci USA 105: 77687773.