SEARCH

SEARCH BY CITATION

References

  • Abril, M.A., Michán, C., Timmis, K.N., and Ramos, J.L. (1989) Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol 171: 67826790.
  • Andrews, A.E., Dickson, B., Lawley, B., Cobbett, C., and Pittard, A.J. (1991a) Importance of the position of TyrR boxes for repression and activation of the tyrP and aroF gene in Escherichia coli. J Bacteriol 173: 50795085.
  • Andrews, A.E., Lawley, B., and Pittard, A.J. (1991b) Mutational analysis of repression and activation of the tyrP gene in Escherichia coli. J Bacteriol 173: 50685078.
  • Argaet, V.P., Wilson, T.J., and Davidson, B.E. (1994) Purification of the Escherichia coli regulatory protein TyrR and analysis of its interactions with ATP, tyrosine, phenylalanine and tryptophan. J Biol Chem 269: 51715178.
  • Arias-Barrau, E., Olivera, E.R., Luengo, J.M., Fernández, C., Galán, B., García, J.L., et al. (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of l-phenylalanine, l-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186: 50625077.
  • Bailey, M.F., Davidson, B.E., Minton, A.P., Sawyer, W.H., and Howlett, G.J. (1996) The effect of self association on the interaction of the Escherichia coli regulatory protein TyrR with DNA. J Mol Biol 263: 671668.
  • Bertin, C., Yang, X., and Weston, L.A. (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256: 6783.
  • Del Castillo, T., Ramos, J.L., Rodríguez-Herva, J.J., Führer, T., Sauer, U., and Duque, E. (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: Genomic and flux analysis. J Bacteriol 189: 51425152.
  • Duque, E., Rodríguez-Herva, J.-J., De La Torre, J., Domínguez-Cuevas, P., Múñoz-Rojas, J., and Ramos, J. (2007a) The RpoT regulon of Pseudomonas putida DOT-T1E and its role in stress endurance against solvents. J Bacteriol 189: 207219.
  • Duque, E., Molina-Henares, A.J., De La Torre, J., Molina-Henares, M.A., Del Castillo, T., Lam, J., and Ramos, J.L. (2007b) Towards a genome-wide mutant library of Pseudomonas putida strains KT2440. In Pseudomonas, Vol. V. Ramos, J.L., and Filloux, A. (eds). London, UK: Springer, pp. 227254.
  • Evans, C.T., Peterson, W., Choma, C., and Misawa, M. (1987) Biotransformation of phenylpyruvate acid to l-phenylalanine using a strain of Pseudomonas fluorescens ATCC 11250 with high transformation activity. Appl Microbiol Biotechnol 26: 305312.
  • Herrera, M.C., and Ramos, J.L. (2007) Catabolism of phenylalanine by Pseudomonas putida: The NtrC-family PhhR regulator binds to two sites upstream from the phhA gene and stimulates transcription with σ70. J Mol Biol 366: 13741386.
  • Köhler, T., Epp, S.F., Curty, L.K., and Pechere, J.C. (1999) Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181: 63006305.
  • Lawley, B., Fujita, N., Ishihama, A., and Pittard, A.J. (1995) The TyrR protein of Escherichia coli is a class I transcription activator. J Bacteriol 177: 238241.
  • Lee, C.-W., and Desmazeaud, M.J. (1986) Evaluation of the contribution of the tyrosine pathway to the catabolism of phenylalanine in Brevibacterium linens 47. FEMS Microbiol Lett 33: 9598.
  • Letto, J., Brosnan, M.E., and Brosnan, J.T. (1986) Valine metabolism. Gluconeogenesis from 3-hydroxyisobutyrate. Biochem J 240: 909912.
  • Llamas, M.A., Rodríguez-Herva, J.J., Hancock, R.E.W., Bitter, W., Rommassen, J., and Ramos, J.L. (2003) Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J Bacteriol 185: 47074716.
  • Matilla, M.A., Ramos, J.L., Duque, E., De D. Alché, J., Espinosa-Urgel, M., and Ramos-González, M.I. (2007) Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol 9: 18421850.
  • Molina, L., Ramos, C., Duque, E., Ronchel, M.C., García, J.M., Wyke, L., and Ramos, J.L. (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32: 315321.
  • Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V.A., et al. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4: 799808.
  • Olivera, E.R., Miñambres, B., García, B., Muñiz, C., Moreno, M.A., Fernández, A., et al. (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: The phenylacetyl-CoA catabolon. Microbiology 95: 64196424.
  • Pittard, A.J. (1996) Biosynthesis of the aromatic amino acids. In Escherichia Coli and Salmonella. Neidhardt, F.C. (ed.). Washington, DC, USA: American Society for Microbiology, pp. 458484.
  • Pittard, A.J., and Davidson, B.E. (1991) TyrR protein of Escherichia coli and its role as repressor and activator. Mol Microbiol 5: 15851592.
  • Pittard, A.J., Camakaris, H., and Yang, J. (2005) The TyrR regulon. Mol Microbiol 55: 1626.
  • Prikryl, Z., and Vancura, V. (1980) Root exudates of plants: wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant Soil 57: 6983.
  • Ranjith, N.K., Saskikala, C.H., and Ramcina, Ch. V. (2007) Catabolism of l-phenylalanine and l-tyrosine by Rhodobacter sphaeroides OTT5 occurs through 2,4-dihydroxyphenylalanine. Res Microbiol 158: 506511.
  • Reva, O.N., Weinel, C., Weinel, M., Böhm, K., Stjepandic, D., Hoheisel, J.D., and Tümmler, B. (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188: 40794092.
  • Revelles, O., Espinosa-Urgel, M., Führer, T., Sauer, U., and Ramos, J.L. (2005) Multiple and interconnected pathways for l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187: 75007510.
  • Revelles, O., Wittich, R.-M., and Ramos, J.L. (2007) Identification of the initial steps in d-lysine catabolism in Pseudomonas putida. J Bacteriol 189: 27872792.
  • Roca, A., Rodríguez-Herva, J.J., Duque, E., and Ramos, J.L. (2008) Physiological responses of Pseudomonas putida to formaldehyde during detoxification. Microb Biotechnol 1: 158169.
  • Rodríguez-Herva, J.J., Ramos-González, M.I., and Ramos, J.L. (1996) The Pseudomonas putida peptidoglycan-associated outer membrane lipoprotein (PAL) is involved in maintenance of the integrity of the cell envelope. J Bacteriol 178: 16991706.
  • Rojo, F. (1999) Repression of transcription initiation in bacteria. J Bacteriol 181: 29872991.
  • Rovira, A.D. (1969) Plant root exudates. Bot Rev 35: 3557.
  • Sarker, M.R., and Cornelis, P.R. (1997) An improved version of suicide vector pKNG101 for gene replacement in gram-negative bacteria. Mol Microbiol 23: 409411.
  • Sarsero, J.P., and Pittard, A.J. (1991) Molecular analysis of the TyrR protein mediated activation of mtr gene expression in Escherichia coli K-12. J Bacteriol 173: 77017704.
  • Segura, A., Rojas, A., Hurtado, A., Huertas, M.J., and Ramos, J.L. (2003) Comparative genomic analysis of solvent extrusion pumps in Pseudomonas strains exhibiting different degrees of solvent tolerance. Extremophiles 7: 371376.
  • Shintani, M., Takahashi, T., Rokumaru, H., Kadota, K., Hara, H., Miyakoshi, M., et al. (2010) Response of the Pseudomonas host chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ Microbiol Rep (in press).
  • Song, J., and Jensen, R.A. (1996) PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Mol Microbiol 22: 497507.
  • Spaepen, S., Versées, W., Gocke, D., Pohl, M., Steyaert, J., and Vanderleyden, J. (2007) Characterization of phenylpyruvate decarboxylase involved in auxin production of Azospirillum brasilense. J Bacteriol 189: 76267633.
  • Spaink, H.P., Okker, R.J.H., Wijffelman, C., Pees, E., and Lugtenberg, B.J.J. (1987) Promotors in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9: 2739.
  • Sukumaram, C.P., Singh, D.-V., Khedkar, P.D., and Mahadevan, P.R. (1979) An actinomycete producing L-3,4-dihydroxyphenylalanine from l-tyrosine. J Biosci 1: 235239.
  • Vílchez, S., Molina, L., Ramos, C., and Ramos, J.L. (2000) Proline catabolism by Pseudomonas putida: Cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol 182: 9199.
  • Wei-Gu, W., Song, J., Bonner, C.A., Xie, G., and Jensen, R.A. (1998) PhhC is an essential aminotransferase for aromatic amino acid catabolism in Pseudomonas aeruginosa. Microbiology 144: 31273134.
  • Whitaker, R.J., Gaines, C.G., and Jensen, R.A. (1982) A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa. J Biol Chem 257: 1355013556.
  • Yang, J., Ganesan, S., Sarsero, J., and Pittard, A.J. (1993) A genetic analysis of various functions of the TyrR protein of Escherichia coli. J Bacteriol 175: 17671776.
  • Yuste, L., Hervás, A.B., Canosa, I., Tobes, R., Jiménez, J.I., Nogales, J., et al. (2006) Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 8: 165177.
  • Zhao, G., Xia, T., Song, J., and Jensen, R.A. (1994) Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4α-carbinolamine dehydratase/DCoH as part of a three-component gene cluster. Proc Natl Acad Sci USA 91: 13661370.