SEARCH

SEARCH BY CITATION

References

  • Abril, M.A., Michán, C., Timmis, K.N., and Ramos, J.L. (1989) Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol 171: 67826790.
  • Alaminos, M., and Ramos, J.L. (2001) The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products. Arch Microbiol 76: 151154.
  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.
  • Ausubel, F.M., Brent, R., Kingston, R.F., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (1991) Current Protocols in Molecular Biology. Greene, NY, USA: John Wiley & Sons.
  • Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 20062008.
  • Barth, A.L., and Pitt, T.L. (1996) The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. J Med Microbiol 45: 110119.
  • Blevins, W.T., Feary, T.W., and Phibbs, P.V., Jr (1975) 6-Phosphogluconate dehydratase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa. J Bacteriol 121: 942949.
  • Böltner, D., Godoy, P., Muñoz-Rojas, J., Duque, E., Moreno-Morillas, S., Sánchez, L., and Ramos, J.L. (2008) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 1: 8793.
  • Boutros, M., Kiger, A.A., Armknecht, S., Kerr, K., Hild, M., Koch, B., et al., the Heidelberg Fly Array Consortium. (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303: 832835.
  • Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., et al. (2001) Minimum information about a microarray experiment (MIAME)-towards standards for microarray data. Nat Genet 29: 365371.
  • Buvinger, W.E., Stone, L.C., and Heath, H.E. (1981) Biochemical genetics of tryptophan synthesis in Pseudomonas acidovorans. J Bacteriol 147: 6268.
  • Caballero, A., Lázaro, J.J., Ramos, J.L., and Esteve-Núñez, A. (2004) PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 7: 12111219.
  • Calhoun, D.H., and Weary, T. (1969) Transductional analysis of Pseudomonas aeruginosa methioninless auxotrophs. J Bacteriol 97: 210216.
  • Del Castillo, T., Ramos, J.L., Rodríguez-Herva, J.J., Führer, T., Sauer, U., and Duque, E. (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189: 51425152.
  • Choi, C., Munch, R., Leupold, S., Klein, J., Siegel, I., Thielen, B., et al. (2007) SYSTOMONAS-an integrated database for systems biology analysis of Pseudomonas. Nucleic Acids Res 35: 533537.
  • Christoferson, M.E., Schmitz, G.E., and Downs, D.M. (2008) YjgF is required for isoleucine biosynthesis when Salmonella enterica is grown on pyruvate medium. J Bacteriol 190: 30573062.
  • Covert, M.W., and Palsson, B.O. (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277: 2805828064.
  • Crawford, I.P., and Gunsalus, I.C. (1966) Inducibility of tryptophan synthetase in Pseudomonas putida. Proc Natl Acad Sci USA 56: 717724.
  • Cuppels, D.A. (1986) Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl Environ Microbiol 51: 323327.
  • Daddaoua, A., Krell, T., and Ramos, J.L. (2009) Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and the Entner-Doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem 284: 2136021368.
  • Duque, E., Molina-Henares, A.J., De La Torre, J., Molina-Henares, M.A., Del Castillo, T., Lam, J., and Ramos, J.L. (2007) Towards a genome-wide mutant library of Pseudomonas putida strain KT2440. In Pseudomonas, Vol. V. Ramos, J.L., and Filloux, A. (eds). Dordrecht, The Netherlands: Springer, pp. 227255.
  • Edwards, J.S., Ibarra, R.U., and Palsson, B.O. (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19: 125130.
  • Espinosa-Urgel, M., and Ramos, J.L. (2004) Cell density-dependent gene contributes to efficient seed colonization by Pseudomonas putida KT2440. Appl Environ Microbiol 70: 51905198.
  • Essar, D.W., Eberly, L., Han, C.Y., and Crawford, I.P. (1990) DNA sequences and characterization of four early genes of the tryptophan pathway in Pseudomonas aeruginosa. J Bacteriol 172: 853866.
  • Franklin, F.C.H., Bagdasarian, M., Bagdasarian, M.M., and Timmis, K.N. (1981) Molecular and functional analysis of the TOL plasmid pWW0 from Pseudomomas putida and cloning of genes for the entire regulated aromatic ring meta-cleavage pathway. Proc Natl Acad Sci USA 78: 74587462.
  • García-Valdés, E., Mulet, M., and Lalucat, J. (2010) Insights into the life styles of Pseudomonas stutzeri. In Pseudomonas, Vol. 6. Ramos, J.L., and Filloux, A. (eds). Dordrecht, The Netherlands: Springer, Chap. 6, (in press).
  • Gerdes, S.Y., Scholle, M.D., Campbell, J.W., Balazsi, G., Ravasz, E., Daugherty, M.D., et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185: 56735684.
  • Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387391.
  • Glass, J.I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M.R., Maruf, M., et al. (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103: 425430.
  • Goldberg, J.B. (2010) Emergence of Pseudomonas aeruginosa in cystic fibrosis lung infections. In Pseudomonas, Vol. 6. Ramos, J.L., and Filloux, A. (eds). Dordrecht, The Netherlands: Springer, Chap. 5, (in press).
  • Han, Y.-K., Lee, T., Han, K.-H., Yun, S.-H., and Lee, Y.-W. (2004) Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae. Curr Genet 46: 205212.
  • Herrero, M., De Lorenzo, V., and Timmis, K.N. (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172: 65576567.
  • Hummerjohann, J., Küttel, E., Quadroni, M., Ragaller, J., Leisinger, T., and Kertes, M.A. (1998) Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology 144: 13751386.
  • Hüser, A.T., Hassagnole, C., Lindley, N.D., Merkamm, M., Guyonvarch, A., Elisáková, V., et al. (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71: 32553268.
  • Isaac, J.H., and Holloway, B.W. (1968) Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 96: 17321741.
  • Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., et al. (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100: 1433914344.
  • Joyce, A.R., Reed, J.L., White, A., Edwards, R., Osterman, A., Baba, T., et al. (2006) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188: 82598271.
  • Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., et al. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34: 354357.
  • Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., et al. (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100: 46784683.
  • Lehoux, D.E., Sanschagrin, F., and Levesque, R.C. (2002) Identification of in vivo essential genes from Pseudomonas aeruginosa by PCR-based signature-tagged mutagenesis. FEMS Microbiol Lett 210: 7380.
  • Li, C., and Lu, C.D. (2009) Arginine racemization by coupled catabolic and anabolic deghydrogenases. Proc Natl Acad Sci USA 106: 906911.
  • Liberati, N.T., Urbach, J.M., Miyata, S., Lee, D.G., Drenkard, E., Wu, G., et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103: 28332838.
  • Lindow, S.E., Andersen, G., and Beattie, G.A. (1993) Characteristics of insertional mutants of Pseudomonas syringae with reduced epiphytic fitness. Appl Environ Microbiol 59: 15931601.
  • De Lorenzo, V., and Timmis, K.N. (1994) Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235: 386405.
  • Maeda, I., Kohara, Y., Yamamoto, M., and Sugimoto, A. (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11: 171176.
  • Matilla, M., Espinosa-Urgel, M., Rodríguez-Herva, J.J., Ramos, J.L., and Ramos-González, M.I. (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8: R179-1R179-13.
  • Menard, A., Monnez, C., Estrada, P., Segonds, C., Caballero-Mellado, J., LiPuma, J.J., et al. (2007) Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations. Environ Microbiol 9: 11761185.
  • Molina, L., Ramos, C., Duque, E., Ronchel, M.C., García, J.M., Wyke, L., and Ramos, J.L. (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32: 315321.
  • Molina-Henares, M.A., García-Salamanca, A., Molina-Henares, A.J., De La Torre, J., Herrera, M.C., Ramos, J.L., and Duque, E. (2009) Functional genomics of aromatic biosynthetic pathways in Pseudomonas putida KT2440. Microbial Biotech 2: 91100.
  • Moxley, J.F., Jewett, M.C., Antoniewicz, M.R., Villas-Boas, S.G., Alper, H., Wheeler, R.T., et al. (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 106: 64776482.
  • Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V.A., et al. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4: 799808.
  • Nogales, J., Palsson, B., and Thiele, I. (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2: 7999.
  • Puchalka, J., Oberhardt, M.A., Godinho, M., Bielcka, A., Regenhardt, D., Timmis, K.N., et al. (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. Plos Comput Biol 4: e1000210.
  • Ramos-González, M.I., Campos, M.J., and Ramos, J.L. (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root-activated promoters. J Bacteriol 187: 40334041.
  • Rediers, H., Bonnecarrère, V., Rainey, P.B., Hammonts, K., Vanderleyden, J., and De Mot, R. (2003) Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl Environ Microbiol 69: 68646874.
  • Revelles, O., Espinosa-Urgel, M., Führer, T., Sauer, U., and Ramos, J.L. (2005) Multiple and interconnected pathwaysfor l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187: 75007510.
  • Revelles, O., Wittich, R.-M., and Ramos, J.L. (2007) Identification of the initial steps in d-lysine catabolism in Pseudomonas putida. J Bacteriol 189: 27872792.
  • Roca, A., Rodríguez-Herva, J.-J., Duque, E., and Ramos, J.L. (2008) Physiological responses of Pseudomonas putida to formaldehyde during detoxification. Microbial Biotechnol 1: 158169.
  • Romero, P., and Karp, P. (2003) PseudoCyc, a pathway-genome database for Pseudomonas aeruginosa. J Mol Microbiol Biotechnol 5: 230239.
  • Ronchel, M.C., and Ramos, J.L. (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67: 26492656.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.
  • Sassetti, C.M., Boyd, D.H., and Rubin, E.J. (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98: 1271212717.
  • Segre, D., Vitkup, D., and Church, G.M. (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99: 1511215117.
  • Segura, A., Godoy, P., Van Dillewijn, P., Hurtado, A., Arroyo, N., Santacruz, S., and Ramos, J.L. (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187: 59375945.
  • Segura, A., Rodríguez-Conde, S., Ramos, C., and Ramos, J.L. (2009) Bacterial responses and interactions with plants during rhizoremediation. Microbial Biotechnol 4: 452464.
  • Shlomi, T., Berkman, O., and Ruppin, E. (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 102: 76957700.
  • Soda, K., and Osumi, T. (1969) Crystalline amino acid recemase with low substrate specificity. Biochem Biophys Res Commun 35: 363368.
  • Song, J.H., Ko, K.S., Lee, J.Y., Baek, J.Y., Oh, W.S., Yoon, H.S., et al. (2005) Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cell 19: 365374.
  • Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., et al. (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75: 748757.
  • Thanassi, J.A., Hartman-Neumann, S.L., Dougherty, T.J., Dougherty, B.A., and Pucci, M.J. (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30: 31523162.
  • Thomas, S.R., Ray, A., Hodson, M.E., and Pitt, T.L. (2000) Increased sputum amino acid concentrations and auxotrophy of Pseudomonas aeruginosa in severe cystic fibrosis lung disease. Thorax 55: 795797.
  • Timmis, K.N. (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4: 779781.
  • Vicente, M., and Cánovas, J.L. (1973) Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. J Bacteriol 116: 908914.
  • Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., et al. (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotech 24: 673679.
  • Weinel, C., Nelson, K.E., and Tümmler, B. (2002) Global features of the Pseudomonas putida KT2440 genome sequence. Environ Microbiol 4: 809818.
  • Worsey, M.J., and Williams, P.A. (1975) Metabolism for toluene and xylenes by Pseudomonas (putida arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124: 713.
  • Yang, Y.H., Dudoit, S., Luu, P., Liu, D.M., Peng, V., Ngai, J., and Speed, T.P. (2002) Normalization for cDNA microarray data: a robust composite methods addressing single and multiple slide systematic variation. Nucleic Acids Res 30: e15.
  • Yuste, L., Hervás, A.B., Canosa, I., Tobes, R., Jiménez, J.I., Nogales, J., et al. (2006) Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 8: 165177.