SEARCH

SEARCH BY CITATION

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.
  • Andrews, S.C., Berks, B.C., McClay, J., Ambler, A., Quail, M.A., Golby, P., and Guest, J.R. (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143: 36333647.
  • Axley, M.J., Böck, A., and Stadtman, T.C. (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci USA 88: 84508454.
  • Berghöfer, Y., Agha-Amiri, K., and Klein, A. (1994) Selenium is involved in the negative regulation of the expression of selenium-free [NiFe] hydrogenases in Methanococcus voltae. Mol Gen Genet 242: 369373.
  • Berry, M.J., Maia, A.L., Kieffer, J.D., Harney, J.W., and Larsen, P.R. (1992) Substitution of cysteine for selenocysteine in type I iodothyronine deiodinase reduces the catalytic efficiency of the protein but enhances its translation. Endocrinology 131: 18481852.
  • Bignell, D.E. (2000) Introduction to symbiosis. In Termites: Evolution, Sociality, Symboses, Ecology. Abe, T., Bignell, D.E., and Higashi, M. (eds). Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 189208.
  • Brauman, A., Kane, M.D., Labat, M., and Breznak, J.A. (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257: 13841387.
  • Breznak, J. (1973) Biology of nonpathogenic, host-associated spirochetes. CRC Crit Rev Microbiol 2: 457489.
  • Breznak, J.A. (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36: 323343.
  • Breznak, J.A., and Switzer, J.M. (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52: 623630.
  • Drake, H.L., and Daniel, S.L. (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 155: 869883.
  • Ebert, A., and Brune, A. (1997) Hydrogen concentration profiles at the oxic–anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63: 40394046.
  • Edgar, R.C. (2004) muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 17921797.
  • Ferry, J.G. (1990a) Formate dehydrogenase: microbiology, biochemistry and genetics. In Autotrophic Microbiology and One-Carbon Metabolism. Codd, G., Dijkhuizen, L., and Tabita, F.R. (eds). Dordrecht, the Netherlands: Kluwer Academic, 117141.
  • Ferry, J.G. (1990b) Formate dehydrogenase. FEMS Microbiol Rev 7: 377382.
  • Fourmy, D., Guittet, E., and Yoshizawa, S. (2002) Structure of prokaryotic SECIS mRNA hairpin and its interaction with elongation factor SelB. J Mol Biol 324: 137150.
  • Fraser, C.M., Norris, S.J., Weinstock, G.M., White, O., Sutton, G.G., Dodson, R., et al. (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281: 375388.
  • Frey, M. (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3: 153160.
  • Fuchs, G. (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39: 181213.
  • Gladyshev, V.N., Boyington, J.C., Khangulov, S.V., Grahame, D.A., Stadtman, T.C., and Sun, P.D. (1996) Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis. J Biol Chem 271: 80958100.
  • Graber, J.R., and Breznak, J.A. (2004) Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol 70: 13071314.
  • Graber, J.R., and Breznak, J.A. (2005) Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Appl Environ Microbiol 71: 18831889.
  • Graber, J.R., Leadbetter, J.R., and Breznak, J.A. (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70: 13151320.
  • Gromer, S., Johansson, L., Bauer, H., Arscott, L.D., Rauch, S., Ballou, D.P., et al. (2003) Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci USA 100: 1261812623.
  • Hakobyan, M., Sargsyan, H., and Bagramyan, K. (2005) Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli. Biophys Chem 115: 5561.
  • Halboth, S., and Klein, A. (1992) Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types. Mol Gen Genet 233: 217224.
  • Hazebrouck, S., Camoin, L., Faltin, Z., Strosberg, A.D., and Eshdat, Y. (2000) Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid hydroperoxide glutathione peroxidase expressed in Escherichia coli. J Biol Chem 275: 2871528721.
  • Heider, J., and Böck, A. (1992) Targeted insertion of selenocysteine into the alpha subunit of formate dehydrogenase from Methanobacterium formicicum. J Bacteriol 174: 659663.
  • Hespell, R.B., and Canale-Parola, E. (1970) Carbohydrate metabolism in Spirochaeta stenostrepta. J Bacteriol 103: 216226.
  • Hoehler, T.M., Bebout, B.M., and Des Marais, D.J. (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412: 324327.
  • Jones, J.B., and Stadtman, T.C. (1981) Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. J Biol Chem 256: 656663.
  • Kim, H.Y., Fomenko, D.E., Yoon, Y.E., and Gladyshev, V.N. (2006) Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases. Biochemistry 45: 1369713704.
  • Krol, A. (2002) Evolutionarily different RNA motifs and RNA–protein complexes to achieve selenoprotein synthesis. Biochimie 84: 765774.
  • Lacourciere, G.M., Mihara, H., Kurihara, T., Esaki, N., and Stadtman, T.C. (2000) Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate. J Biol Chem 275: 2376923773.
  • Leadbetter, J.R., Schmidt, T.M., Graber, J.R., and Breznak, J.A. (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283: 686689.
  • Lee, S.R., Bar-Noy, S., Kwon, J., Levine, R.L., Stadtman, T.C., and Rhee, S.G. (2000) Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci USA 97: 25212526.
  • Li, L.F., Ljungdahl, L., and Wood, H.G. (1966) Properties of nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum. J Bacteriol 92: 405412.
  • Lilburn, T.G., Schmidt, T.M., and Breznak, J.A. (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1: 331345.
  • Liu, Z., Reches, M., Groisman, I., and Engelberg-Kulka, H. (1998) The nature of the minimal ‘selenocysteine insertion sequence’ (SECIS) in Escherichia coli. Nucleic Acids Res 26: 896902.
  • Lowe, T.M., and Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955964.
  • Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 13631371.
  • McHardy, A.C., Martin, H.G., Tsirigos, A., Hugenholtz, P., and Rigoutsos, I. (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 4: 6372.
  • Metanis, N., Keinan, E., and Dawson, P.E. (2006) Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J Am Chem Soc 128: 1668416691.
  • Mikx, F. (1997) Environmental effects on the growth and proteolysis of Treponema denticola ATCC 33520. Oral Microbiol Immunol 12: 249253.
  • Miozzari, G., Niederberger, P., and Hütter, R. (1978) Tryptophan biosynthesis in Saccharomyces cerevisiae: control of the flux through the pathway. J Bacteriol 134: 4859.
  • Noll, I., Müller, S., and Klein, A. (1999) Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon Methanococcus voltae involves positive and negative control elements. Genetics 152: 13351341.
  • Ochman, H., Medhora, M.M., Garza, D., and Hartl, D.L. (1990) Amplification of flanking sequences by inverse PCR. In PCR Protocols: A Guide to Methods and Applications. Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (eds). San Diego, CA, USA: Academic Press, pp. 219227.
  • Odelson, D.A., and Breznak, J.A. (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45: 16021613.
  • Odelson, D.A., and Breznak, J.A. (1985a) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49: 622626.
  • Odelson, D.A., and Breznak, J.A. (1985b) Nutrition and growth-characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49: 614621.
  • Ottesen, E.A., Hong, J.W., Quake, S.R., and Leadbetter, J.R. (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314: 14641467.
  • Paster, B.J., and Dewhirst, F.E. (2000) Phylogenetic foundation of spirochetes. J Mol Microbiol Biotechnol 2: 341344.
  • Paster, B.J., Dewhirst, F.E., Cooke, S.M., Fussing, V., Poulsen, L.K., and Breznak, J.A. (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62: 347352.
  • Pester, M., and Brune, A. (2006) Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 8: 12611270.
  • Pester, M., and Brune, A. (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1: 551565.
  • Pierce, E., Xie, G., Barabote, R.D., Saunders, E., Han, C.S., Detter, J.C., et al. (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10: 25502573.
  • Pöhlschroeder, M., Leschine, S.B., and Canale-Parola, E. (1994) Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum. Arch Microbiol 161: 1724.
  • Ragsdale, S.W., and Pierce, E. (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 1784: 18731898.
  • Rother, M., Böck, A., and Wyss, C. (2001) Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase. Arch Microbiol 177: 113116.
  • Rozen, S., and Skaletsky, H.J. (2000) Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. Krawetz, S., and Misener, S. (eds). Totowa, NJ, USA: Humana Press, pp. 365386.
  • Salmassi, T.M., and Leadbetter, J.R. (2003) Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149: 25292537.
  • Schauer, N.L., and Ferry, J.G. (1982) Properties of formate dehydrogenase in Methanobacterium formicicum. J Bacteriol 150: 17.
  • Schink, B., Lupton, F.S., and Zeikus, J.G. (1983) Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen-consuming bacteria living in extreme environments. Appl Environ Microbiol 45: 14911500.
  • Seshadri, R., Myers, G.S., Tettelin, H., Eisen, J.A., Heidelberg, J.F., Dodson, R.J., et al. (2004) Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci USA 101: 56465651.
  • Sonnhammer, E.L., and Koonin, E.V. (2002) Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet 18: 619620.
  • Sun, J., and Klein, A. (2004) A lysR-type regulator is involved in the negative regulation of genes encoding selenium-free hydrogenases in the archaeon Methanococcus voltae. Mol Microbiol 52: 563571.
  • Thanbichler, M., and Böck, A. (2002) The function of SECIS RNA in translational control of gene expression in Escherichia coli. EMBO J 21: 69256934.
  • Thauer, R.K. (1972) CO(2)-reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO(2) in Clostridium thermoaceticum. FEBS Lett 27: 111115.
  • Thauer, R.K., Jungermann, K., and Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100180.
  • Tholen, A., and Brune, A. (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65: 44974505.
  • Tholen, A., and Brune, A. (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2: 436449.
  • Valente, F.M., Almeida, C.C., Pacheco, I., Carita, J., Saraiva, L.M., and Pereira, I.A. (2006) Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188: 32283235.
  • Veres, Z., Kim, I.Y., Scholz, T.D., and Stadtman, T.C. (1994) Selenophosphate synthetase. Enzyme properties and catalytic reaction. J Biol Chem 269: 1059710603.
  • Vorholt, J.A., Vaupel, M., and Thauer, R.K. (1997) A selenium-dependent and a selenium-independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri. Mol Microbiol 23: 10331042.
  • Warnecke, F., Lüginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560565.
  • Yamin, M.A. (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211: 5859.
  • Yoshizawa, S., Rasubala, L., Ose, T., Kohda, D., Fourmy, D., and Maenaka, K. (2005) Structural basis for mRNA recognition by elongation factor SelB. Nat Struct Mol Biol 12: 198203.
  • Zhang, Y., and Gladyshev, V.N. (2005) An algorithm for identification of bacterial selenocysteine insertion sequence elements and selenoprotein genes. Bioinformatics 21: 25802589.
  • Zinoni, F., Birkmann, A., Stadtman, T.C., and Böck, A. (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate–hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci USA 83: 46504654.
  • Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 34063415.