SEARCH

SEARCH BY CITATION

References

  • Amos, D.A., and McInerney, M.J. (1989) Poly-β-hydroxyalkanoate in Syntrophomonas wolfei. Arch Microbiol 152: 172177.
  • Amos, D.A., and McInerney, M.J. (1990) Growth of Syntrophomonas wolfei on short-chain unsaturated fatty acids. Arch Microbiol 154: 3136.
  • Amos, D.A., and McInerney, M.J. (1993) Formation of D-3-hydroxybutyryl-coenzyme A by an acetoacetyl-coenzyme A reductase in Syntrophomonas wolfei subsp. wolfei. Arch Microbiol 159: 1620.
  • Anderson, A.J., Haywood, G.W., and Dawes, E.A. (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12: 102105.
  • Beaty, P.S., and McInerney, M.J. (1987) Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147: 389393.
  • Beaty, P.S., and McInerney, M.J. (1989) Effects of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia. Appl Environ Microbiol 55: 977983.
  • Beaty, P.S., and McInerney, M.J. (1990) Nutritional features of Syntrophomonas wolfei. Appl Environ Microbiol 56: 32233224.
  • Beaty, P.S., Wofford, N.Q., and McInerney, M.J. (1987) Separation of Syntrophomonas wolfei from Methanospirillum hungatei in syntrophic cocultures by using percoll gradients. Appl Environ Microbiol 53: 11831185.
  • Beckmann, J.D., and Frerman, F.E. (1985a) Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase. Biochemistry 24: 39223925.
  • Beckmann, J.D., and Frerman, F.E. (1985b) Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry 24: 39133921.
  • Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623626.
  • Delcher, A.L., Harmon, D., Kasif, S., White, O., and Salzberg, S.L. (1999a) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: 46364641.
  • Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., and Salzberg, S.L. (1999b) Alignment of whole genomes. Nucleic Acids Res 27: 23692376.
  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 50695072.
  • Do, C.B., Mahabhashyam, M.S., Brudno, M., and Batzoglou, S. (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15: 330340.
  • Earl, C.D., Ronson, C.W., and Ausubel, F.M. (1987) Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J Bacteriol 169: 11271136.
  • Edgren, T., and Nordlund, S. (2004) The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J Bacteriol 186: 20522060.
  • Eichler, K., Buchet, A., Bourgis, F., Kleber, H.P., and Mandrand-Berthelot, M.A. (1995) The fix Escherichia coli region contains four genes related to carnitine metabolism. J Basic Microbiol 35: 217227.
  • Ewing, B., and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186194.
  • Ewing, B., Hillier, L., Wendl, M.C., and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175185.
  • Felsenstein, J. (1989) phylip– Phylogeny Inference Package (Version 3.2). Cladistics 5: 164166.
  • Fisher, N., and Rich, P.R. (2000) A motif for quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296: 11531162.
  • Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res 8: 195202.
  • Greene, E.A., Hubert, C., Nemati, M., Jenneman, G.E., and Voordouw, G. (2003) Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 5: 607617.
  • Heidelberg, J.F., Seshadri, R., Haveman, S.A., Hemme, C.L., Paulsen, I.T., Kolonay, J.F., et al. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554559.
  • Herrmann, G., Jayamani, E., Mai, G., and Buckel, W. (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190: 784791.
  • Horvath, P., Coute-Monvoisin, A.C., Romero, D.A., Boyaval, P., Fremaux, C., and Barrangou, R. (2009) Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131: 6270.
  • Husain, M., and Steenkamp, D.J. (1985) Partial purification and characterization of glutaryl-coenzyme A dehydrogenase, electron transfer flavoprotein, and electron transfer flavoprotein-Q oxidoreductase from Paracoccus denitrificans. J Bacteriol 163: 709715.
  • Ishii, S., Kosaka, T., Hotta, Y., and Watanabe, K. (2006) Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia. Appl Environ Microbiol 72: 50935096.
  • Jackson, B.E., and McInerney, M.J. (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415: 454456.
  • Jormakka, M., Tornroth, S., Byrne, B., and Iwata, S. (2002) Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295: 18631868.
  • Kosaka, T., Kato, S., Shimoyama, T., Ishii, S., Abe, T., and Watanabe, K. (2008) The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res 18: 442448.
  • Li, F., Hagemeier, C.H., Seedorf, H., Gottschalk, G., and Thauer, R.K. (2007) re-citrate synthase from Clostridium kluyveri is phylogenetically related to homocitrate synthase and isopropylmalate synthase rather than to si-citrate synthase. J Bacteriol 189: 42994304.
  • Li, F., Hinderberger, J., Seedorf, H., Zhang, J., Buckel, W., and Thauer, R.K. (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190: 843850.
  • Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 13631371.
  • McInerney, M.J., and Bryant, M.P. (1981) Basic principles of anaerobic degradation and methane production. In Biomass Conversion Processes for Energy and Fuels. Sofer, S.S., and Zaborsky, O.R. (eds). New York, USA: Plenum Publishing Corp., pp. 277296.
  • McInerney, M.J., and Wofford, N.Q. (1992) Enzymes involved in crotonate metabolism in Syntrophomonas wolfei. Arch Microbiol 158: 344349.
  • McInerney, M.J., Bryant, M.P., and Pfennig, N. (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122: 129135.
  • McInerney, M.J., Bryant, M.P., Hespell, R.B., and Costerton, J.W. (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41: 10291039.
  • McInerney, M.J., Amos, D.A., Kealy, K.S., and Palmer, J.A. (1992) Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria. FEMS Microbiol Rev 103: 195206.
  • McInerney, M.J., Rohlin, L., Mouttaki, H., Kim, U., Krupp, R.S., Rios-Hernandez, L., et al. (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA 104: 76007605.
  • McInerney, M.J., Struchtemeyer, C.G., Sieber, J., Mouttaki, H., Stams, A.J., Schink, B., et al. (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann NY Acad Sci 1125: 5872.
  • McInerney, M.J., Sieber, J.R., and Gunsalus, R.P. (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20: 623632.
  • Mahadevan, R., and Lovley, D.R. (2008) The degree of redundancy in metabolic genes is linked to mode of metabolism. Biophys J 94: 12161220.
  • Miller, M., Holder, M., Vos, R., Midford, P., Liebowitz, T., Chan, L., et al. (2009) The CIPRES portals [WWW document]. URL http://www.phylo.org/sub_sections/portal.
  • Müller, N., Schleheck, D., and Schink, B. (2009) Involvement of NADH: acceptor oxidoreductase and butyryl-CoA dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. J Bacteriol 191: 61676177.
  • Odom, J.M., and Peck, H.D., Jr (1981) Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147: 161169.
  • Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005) Extracellular electron transfer via microbial nanowires. Nature 435: 10981101.
  • Ren, Q., Chen, K., and Paulsen, I. (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35: D274D279.
  • Rocha, E. (2002) Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes? Trends Microbiol 10: 393395.
  • Sato, K., Nishina, Y., Setoyama, C., Miura, R., and Shiga, K. (1999) Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: a reason for the distinct metabolic pathway of propionyl-CoA from longer acyl-CoAs. J Biochem 126: 668675.
  • Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61: 262280.
  • Schöcke, L., and Schink, B. (1997) Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology 143: 23452351.
  • Scholten, J.C., and Conrad, R. (2000) Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl Environ Microbiol 66: 29342942.
  • Schut, G., and Adams, M. (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191: 44514417.
  • Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., and Harada, H. (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65: 12801288.
  • Shimoyama, T., Kato, S., Ishii, S., and Watanabe, K. (2009) Flagellum mediates symbiosis. Science 323: 1574.
  • Sorek, R., Kunin, V., and Hugenholtz, P. (2008) CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6: 181186.
  • Sousa, D., Smidt, H., Alves, M., and Stams, A. (2007) Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57: 609615.
  • Sperotto, R.A., Gross, J., Vedoy, C., Passaglia, L.M., and Schrank, I.S. (2004) The electron transfer flavoprotein fixABCX gene products from Azospirillum brasilense show a NifA-dependent promoter regulation. Curr Microbiol 49: 267273.
  • Stamatakis, A., Hoover, P., and Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758771.
  • Strittmatter, A.W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., et al. (2009) Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol 11: 10381055.
  • Thauer, R.K., Jungermann, K., and Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100180.
  • Vignais, P.M., Billoud, B., and Meyer, J. (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25: 455501.
  • Wallrabenstein, C., and Schink, B. (1994) Evidence of reversed electron transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Arch Microbiol 162: 136142.
  • Walt, A., and Kahn, M.L. (2002) The fixA and fixB genes are necessary for anaerobic carnitine reduction in Escherichia coli. J Bacteriol 184: 40444047.
  • Weidenhaupt, M., Rossi, P., Beck, C., Fischer, H.M., and Hennecke, H. (1996) Bradyrhizobium japonicum possesses two discrete sets of electron transfer flavoprotein genes: fixA, fixB and etfS, etfL. Arch Microbiol 165: 169178.
  • Wilson, K. (2001) Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds). New York, USA: Greene Publishing Associates and Wiley-Interscience, Unit 2.4.
  • Wofford, N.Q., Beaty, P.S., and McInerney, M.J. (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167: 179185.
  • Wu, C., Liu, X., and Dong, X. (2006a) Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst Appl Microbiol 29: 457462.
  • Wu, C., Liu, X., and Dong, X. (2006b) Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56: 2331.
  • Wu, C., Dong, X., and Liu, X. (2007a) Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov. comb. nov. Syst Appl Microbiol 30: 376380.
  • Wu, C., Zhang, G., Liu, X., and Dong, X. (2007b) Bicarbonate is a stimulus in the inter-species induced sporulation of strict anaerobic Syntrophomonas erecta subsp. sporosyntropha. Extremophiles 11: 827832.
  • Zhang, C., Liu, X., and Dong, X. (2004) Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54: 969973.
  • Zhao, H.X., Yang, D.C., Woese, C.R., and Bryant, M.P. (1990) Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40: 4044.