A subset of naturally isolated Bacillus strains show extreme virulence to the free-living nematodes Caenorhabditis elegans and Pristionchus pacificus

Authors


E-mail ralf.sommer@tuebingen.mpg.de; Tel. (+49) 7071 601 371; Fax (+49) 7071 601 498.

Summary

The main food source of free-living nematodes in the soil environment is bacteria, which can affect nematode development, fecundity and survival. In order to occupy a reliable source of bacterial food, some nematodes have formed specific relationships with an array of invertebrate hosts (where bacteria proliferate once the hosts dies), thus forming a tritrophic system of nematode, bacteria and insect or other invertebrates. We isolated 768 Bacillus strains from soil (from Germany and the UK), horse dung and dung beetles and fed them to the genetically tractable free-living nematodes Caenorhabditis elegans and Pristionchus pacificus to isolate nematocidal strains. While C. elegans is a bacteriovorous soil nematode, P. pacificus is an omnivorous worm that is often found in association with scarab beetles. We found 20 Bacillus strains (consisting of B. cereus, B. weihenstephanensis, B. mycoides and Bacillus sp.) that were pathogenic to C. elegans and P. pacificus causing 70% to 100% mortality over 5 days and significantly affect development and brood size. The most pathogenic strains are three B. cereus-like strains isolated from dung beetles, which exhibit extreme virulence to C. elegans in less than 24 h, but P. pacificus remains resistant. C. elegans Bre mutants were also highly susceptible to the B. cereus-like strains indicating that their toxins use a different virulence mechanism than B. thuringiensis Cry 5B toxin. Also, mutations in the daf-2/daf-16 insulin signaling pathway do not rescue survival. We profiled the toxin genes (bcet, nhe complex, hbl complex, pcpl, sph, cytK, piplc, hly2, hly3, entFM and entS) of these three B. cereus-like strains and showed presence of most toxin genes but absence of the hbl complex. Taken together, this study shows that the majority of naturally isolated Bacillus from soil, horse dung and Geotrupes beetles are benign to both C. elegans and P. pacificus. Among 20 pathogenic strains with distinct virulence patterns against the two nematodes, we selected three B. cereus-like strains to investigate resistance and susceptibility immune responses in nematodes.

Ancillary