SEARCH

SEARCH BY CITATION

References

  • Chidthaisong, A., Rosenstock, B., and Conrad, R. (1999) Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil. Appl Environ Microbiol 65: 23502355.
  • Chin, K.J., Lukow, T., and Conrad, R. (1999) Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl Environ Microbiol 65: 23412349.
  • Conrad, R., and Klose, M. (1999) Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots. FEMS Microbiol Ecol 30: 147155.
  • Conrad, R., and Wetter, B. (1990) Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch Microbiol 155: 9498.
  • Conrad, R., Klose, M., and Noll, M. (2009) Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ Microbiol 11: 18441853.
  • Davidson, E.A., and Janssens, I.A. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [Review]. Nature 440: 165173.
  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 50695072.
  • Erkel, C., Kemnitz, D., Kube, M., Ricke, P., Chin, K.J., Dedysh, S., et al. (2005) Retrieval of first genome data for rice cluster I methanogens by a combination of cultivation and molecular techniques. FEMS Microbiol Ecol 53: 187204.
  • Fey, A., and Conrad, R. (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66: 47904797.
  • Fey, A., Chin, K.J., and Conrad, R. (2001) Thermophilic methanogens in rice field soil. Environ Microbiol 3: 295303.
  • Fey, A., Claus, P., and Conrad, R. (2004) Temporal change of 13C-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures. Geochim Cosmochim Acta 68: 293306.
  • Glissmann, K., and Conrad, R. (2000) Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 31: 117126.
  • Glissmann, K., and Conrad, R. (2002) Saccharolytic activity and its role as a limiting step in methane formation during the anaerobic degradation of rice straw in rice paddy soil. Biol Fertil Soils 35: 6267.
  • Hattori, S., Kamagata, Y., Hanada, S., and Shoun, H. (2000) Thermacetogenium phaeum gen. nov., sp nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50: 16011609.
  • Hattori, S., Galushko, A.S., Kamagata, Y., and Schink, B. (2005) Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187: 34713476.
  • Hoehler, T.M. (2008) Biological energy requirements as quantitative boundary conditions for life in the subsurface [Review]. Geobiology 2: 205215.
  • Holzapfel-Pschorn, A., Conrad, R., and Seiler, W. (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92: 223233.
  • Hori, T., Noll, M., Igarashi, Y., Friedrich, M.W., and Conrad, R. (2007) Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA. Appl Environ Microbiol 73: 101109.
  • Kemnitz, D., Kolb, S., and Conrad, R. (2005) Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Environ Microbiol 7: 553565.
  • Laanbroek, H.J., Abee, T., and Voogd, I.L. (1982) Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch Microbiol 133: 178184.
  • Lee, M.J., and Zinder, S.H. (1988) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol 54: 124129.
  • Lelieveld, J., Crutzen, P.J., and Dentener, F.J. (1998) Changing concentrations, lifetime and climate forcing of atmospheric methane. Tellus 50B: 128150.
  • Liu, F.H., Wang, S.B., Zhang, J.S., Zhang, J., Yan, X., Zhou, H.K., et al. (2009) The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol 106: 952966.
  • Lueders, T., and Friedrich, M. (2000) Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol 66: 27322742.
  • Lueders, T., Manefield, M., and Friedrich, M.W. (2004a) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6: 7378.
  • Lueders, T., Pommerenke, B., and Friedrich, M.W. (2004b) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70: 57785786.
  • Maestrojuan, G.M., and Boone, D.R. (1991) Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int J Syst Bacteriol 41: 267274.
  • Mladenovska, Z., and Ahring, B.K. (1997) Mixotrophic growth of two thermophilic Methanosarcina strains, Methanosarcina thermophila Tm-1 and Methanosarcina sp. S0-2P, on methanol and hydrogen/carbon dioxide. Appl Microbiol Biotechnol 48: 385388.
  • Noll, M., Matthies, D., Frenzel, P., Derakshani, M., and Liesack, W. (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7: 382395.
  • Noll, M., Klose, M., and Conrad, R. (2010) Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. FEMS Microbiol Ecol (in press): doi:10.1111/j.1574-6941.2010.00883.x.
  • Nüsslein, B., Chin, K.J., Eckert, W., and Conrad, R. (2001) Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ Microbiol 3: 460470.
  • Ohno, M., Okano, I., Watsuji, T., Kakinuma, T., Ueda, K., and Beppu, T. (1999) Establishing the independent culture of a strictly symbiotic bacterium Symbiobacterium thermophilum from its supporting Bacillus strain. Biosci Biotechnol Biochem 63: 10831090.
  • Penning, H., and Conrad, R. (2007) Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Org Geochem 38: 20582069.
  • Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 71887196.
  • Radajewski, S., Ineson, P., Parekh, N.R., and Murrell, J.C. (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403: 646649.
  • Rui, J., Peng, J., and Lu, Y. (2009) Succession of bacterial populations during plant residue decomposition in rice field soil. Appl Environ Microbiol 75: 48794886.
  • Sakai, S., Imachi, H., Hanada, S., Ohashi, A., Harada, H., and Kamagata, Y. (2008) Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58: 929936.
  • Sakai, S., Conrad, R., Liesack, W., and Imachi, H. (2010) Methanocella arvoryzae sp.nov., a hydrogenotrophic methanogen, isolated from Italian rice field soil. Int J Syst Evol Microbiol (in press): doi: ijs.0.020883-0.
  • Schink, B., and Stams, A.J.M. (2006) Syntrophism among prokaryotes. In The Prokaryotes, 3rd edn, Vol. 2. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, NY, USA: Springer, pp. 309335.
  • Schnürer, A., Schink, B., and Svensson, B.H. (1996) Clostridium ultunense sp.nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46: 11451152.
  • Schuler, S., and Conrad, R. (1990) Soils contain two different activities for oxidation of hydrogen. FEMS Microbiol Ecol 73: 7784.
  • Schütz, H., Seiler, W., and Conrad, R. (1990) Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 11: 7795.
  • Stubner, S. (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreenTM detection. J Microbiol Methods 50: 155164.
  • Sugihara, T., Shiratori, H., Domoto, R., Miyake, T., Yaegashi, M., Ayame, S., et al. (2007) Unique diversity content of a thermophilic anaerobic microbial consortium that utilizes propionate in a synthetic medium. J Gen Appl Microbiol 53: 363369.
  • Suzuki, S., Horinouchi, S., and Beppu, T. (1988) Growth of a tryptophanase-producing thermophile, Symbiobacterium thermophilum gen.nov., sp. nov., is dependent on co-culture with a Bacillus sp. J Gen Microbiol 134: 23532362.
  • Tang, Y.Q., Matsui, T., Morimura, S., Wu, X.L., and Kida, K. (2008) Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation. J Biosci Bioeng 106: 180187.
  • Takai, Y. (1970) The mechanism for methane fermentation in flooded paddy soil. Soil Sci Plant Nutr 16: 238244.
  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697703.
  • Wu, X.L., Friedrich, M.W., and Conrad, R. (2006) Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environ Microbiol 8: 394404.
  • Zhilina, T.N., Zavarzina, D.G., Kolganova, T.V., Tourova, T.P., and Zavarzin, G.A. (2005) Candidatus Contubernalis alkalaceticum’, an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum. Mikrobiologyia 74: 695703.