SEARCH

SEARCH BY CITATION

References

  • Allerberger, F., and Wagner, M. (2010) Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 16: 1623.
  • Allesen-Holm, M., Barken, K.B., Yang, L., Klausen, M., Webb, J.S., Kjelleberg, S., et al. (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59: 11141128.
  • ANSES (2009) Rapport Listeriose et consommation : Avis sur l'augmentation des cas de listériose et le lien éventuel avec l'évolution des modes de production, de préparation et de consommation des aliments (MIC-Ra-ListerioseAlim). Gauchard, F. and Tenailleau, S. (eds). [WWW document]. URL http://www.afssa.fr/Documents/MIC-Ra-ListerioseAliments.pdf.
  • Autret, N., Raynaud, C., Dubail, I., Berche, P., and Charbit, A. (2003) Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun 71: 44634471.
  • Begley, M., Kerr, C., and Hill, C. (2009) Exposure to bile influences biofilm formation by Listeria monocytogenes. Gut Pathog 1: 11.
  • Bejerano-Sagie, M., Oppenheimer-Shaanan, Y., Berlatzky, I., Rouvinski, A., Meyerovich, M., and Ben-Yehuda, S. (2006) A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis. Cell 125: 679690.
  • Beresford, M.R., Andrew, P.W., and Shama, G. (2001) Listeria monocytogenes adheres to many materials found in food-processing environments. J Appl Microbiol 90: 10001005.
  • Berne, C., Kysela, D.T., and Brun, Y.V. (2010) A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol 77: 815829.
  • Bierne, H., and Cossart, P. (2007) Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 71: 377397.
  • Blackman, I.C., and Frank, J.F. (1996) Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J Food Prot 59: 827831.
  • Blehert, D.S., Palmer, R.J., Jr, Xavier, J.B., Almeida, J.S., and Kolenbrander, P.E. (2003) Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J Bacteriol 185: 48514860.
  • von Bodman, S.B., Willey, J.M., and Diggle, S.P. (2008) Cell–cell communication in bacteria: united we stand. J Bacteriol 190: 43774391.
  • Borucki, M.K., Peppin, J.D., White, D., Loge, F., and Call, D.R. (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69: 73367342.
  • Carpentier, B., and Chassaing, D. (2004) Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int J Food Microbiol 97: 111122.
  • Chae, M.S., and Schraft, H. (2000) Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int J Food Microbiol 62: 103111.
  • Chae, M.S., Schraft, H., Truelstrup Hansen, L., and Mackereth, R. (2006) Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol 23: 250259.
  • Challan Belval, S., Gal, L., Margiewes, S., Garmyn, D., Piveteau, P., and Guzzo, J. (2006) Assessment of the roles of LuxS, S-ribosyl homocysteine, and autoinducer 2 in cell attachment during biofilm formation by Listeria monocytogenes EGD-e. Appl Environ Microbiol 72: 26442650.
  • Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M.N., and Hébraud, M. (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68: 728737.
  • Chen, Y., and Knabel, S.J. (2008) Chapter 7: strain typing. In Handbook of Listeria Monocytogenes. Liu, D. (ed.). Boca Raton, FL, USA: CRC Press, Taylor and Francis Group, pp. 203240.
  • Cheng, Y., Siletzky, R.M., and Kathariou, S. (2008) Chapter 11: genomic divisions/lineages, epidemic clones, and population structure. In Handbook of Listeria Monocytogenes. Liu, D. (ed.). Boca Raton, Florida, USA: CRC Press, Taylor and Francis Group, pp. 337357.
  • Chorianopoulos, N.G., Giaouris, E.D., Kourkoutas, Y., and Nychas, G.J. (2010) Inhibition of the early stage of Salmonella enterica serovar enteritidis biofilm development on stainless steel by cell-free supernatant of a Hafnia alvei culture. Appl Environ Microbiol 76: 20182022.
  • Cole, S.P., Harwood, J., Lee, R., She, R., and Guiney, D.G. (2004) Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol 186: 31243132.
  • Cordano, A.M., and Jacquet, C. (2009) Listeria monocytogenes isolated from vegetable salads sold at supermarkets in Santiago, Chile: prevalence and strain characterization. Int J Food Microbiol 132: 176179.
  • Cossart, P. (2002) Molecular and cellular basis of the infection by Listeria monocytogenes: an overview. Int J Med Microbiol 291: 401409.
  • Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M. (1995) Microbial biofilms. Annu Rev Microbiol 49: 711745.
  • Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I., and Penades, J.R. (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183: 28882896.
  • Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295298.
  • Desvaux, M. (2005) The cellulosome of Clostridium cellulolyticum. Enzyme Microb Technol 37: 373385.
  • Desvaux, M. (2006) Unravelling carbon metabolism in anaerobic cellulolytic bacteria. Biotechnol Prog 22: 12291238.
  • Desvaux, M., and Hébraud, M. (2006) The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 30: 774805.
  • Desvaux, M., and Hébraud, M. (2008) Chapter 12: analysis of cell envelope proteins. In Handbook of Listeria Monocytogenes. Liu, D. (ed.). Boca Raton, Florida, USA: CRC Press, Taylor and Francis Group, pp. 359393.
  • Desvaux, M., and Hébraud, M. (2009) Chapter 14: Listeria monocytogenes. In Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis. Wooldridge, K. (ed.). Norwich, UK: Caister Academic Press, pp. 313345.
  • Desvaux, M., and Petitdemange, H. (2001) Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl Environ Microbiol 67: 38463851.
  • Desvaux, M., and Petitdemange, H. (2002) Sporulation of Clostridium cellulolyticum while grown in cellulose-batch and cellulose-fed continuous cultures on a mineral-salt based medium. Microb Ecol 43: 271279.
  • Desvaux, M., Guedon, E., and Petitdemange, H. (2001a) Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl Environ Microbiol 67: 38463851.
  • Desvaux, M., Guedon, E., and Petitdemange, H. (2001b) Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl Environ Microbiol 67: 38373845.
  • Desvaux, M., Parham, N.J., and Henderson, I.R. (2003) Type-V secretion system in Gram-negative bacteria. Biofutur 237: 3437.
  • Desvaux, M., Khan, A., Beatson, S.A., Scott-Tucker, A., and Henderson, I.R. (2005a) Protein secretion systems in Fusobacterium nucleatum: genomic identification of Type 4 piliation and complete Type V pathways brings new insight into mechanisms of pathogenesis. Biochim Biophys Acta-Biomembr 1713: 92112.
  • Desvaux, M., Khan, A., Scott-Tucker, A., Chaudhuri, R.R., Pallen, M.J., and Henderson, I.R. (2005b) Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824. Biochim Biophys Acta-Mol Cell Res 1745: 223253.
  • Desvaux, M., Hébraud, M., Henderson, I.R., and Pallen, M.J. (2006a) Type III secretion: what's in a name? Trends Microbiol 14: 157160.
  • Desvaux, M., Dumas, E., Chafsey, I., and Hébraud, M. (2006b) Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256: 115.
  • Desvaux, M., Hébraud, M., Talon, R., and Henderson, I.R. (2009a) Outer membrane translocation: numerical protein secretion nomenclature in question in mycobacteria. Trends Microbiol 17: 338340.
  • Desvaux, M., Hébraud, M., Talon, R., and Henderson, I.R. (2009b) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17: 139145.
  • Desvaux, M., Dumas, E., Chafsey, I., Chambon, C., and Hébraud, M. (2010) Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res 9: 50765092.
  • Di Bonaventura, G., Piccolomini, R., Paludi, D., D'Orio, V., Vergara, A., Conter, M., and Ianieri, A. (2008) Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol 104: 15521561.
  • Djordjevic, D., Wiedmann, M., and McLandsborough, L.A. (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68: 29502958.
  • Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C., and Martin, P. (2004) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42: 38193822.
  • Dramsi, S., Bourdichon, F., Cabanes, D., Lecuit, M., Fsihi, H., and Cossart, P. (2004) FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53: 639649.
  • Dumas, E., Meunier, B., Berdagué, J.L., Chambon, C., Desvaux, M., and Hébraud, M. (2008) Comparative analysis of extracellular and intracellular proteomes of Listeria monocytogenes strains reveals a correlation between protein expression and serovar. Appl Environ Microbiol 74: 73997409.
  • Dumas, E., Desvaux, M., Chambon, C., and Hébraud, M. (2009a) Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis. Proteomics 9: 31363155.
  • Dumas, E., Meunier, B., Berdagué, J.L., Chambon, C., Desvaux, M., and Hébraud, M. (2009b) The origin of Listeria monocytogenes 4b isolates is signified by subproteomic profiling. Biochim Biophys Acta-Proteins Proteomics 1794: 15301536.
  • Dunny, G.M., and Leonard, B.A. (1997) Cell–cell communication in Gram-positive bacteria. Annu Rev Microbiol 51: 527564.
  • Dussurget, O., Pizarro-Cerda, J., and Cossart, P. (2004) Molecular determinants of Listeria monocytogenes virulence. Annu Rev Microbiol 58: 587610.
  • Ells, T.C., and Truelstrup Hansen, L. (2006) Strain and growth temperature influence Listeria spp. attachment to intact and cut cabbage. Int J Food Microbiol 111: 3442.
  • Ells, T.C., and Truelstrup Hansen, L. (2010) Growth of Listeria spp. in shredded cabbage is enhanced by a mild heat treatment. J Food Prot 73: 425433.
  • Farber, J.M., and Peterkin, P.I. (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55: 476511.
  • Fenlon, D.R. (1999) Listeria monocytogenes in the natural environment. In Listeria, Listeriosis, and Food Safety. Ryser, E.T., and Marth, E.H. (eds). New York, NY, USA: Marcel Dekker, pp. 2138.
  • Flemming, H.C., and Wingender, J. (2010) The biofilm matrix. Nat Rev Microbiol 8: 623633.
  • Folio, P. (2003) Etablissement d'une base de données protéomique de Listeria monocytogenes EGD-e. Approche protéomique et transcriptomique de l'adhésion et de la formation d'un biofilm par Listeria monocytogenes. Clermont-Ferrand, France: Thèse de Doctorat de l'Université Blaise Pascal.
  • Folsom, J.P., and Frank, J.F. (2006) Chlorine resistance of Listeria monocytogenes biofilms and relationship to subtype, cell density, and planktonic cell chlorine resistance. J Food Prot 69: 12921296.
  • Franciosa, G., Maugliani, A., Scalfaro, C., Floridi, F., and Aureli, P. (2009) Expression of internalin A and biofilm formation among Listeria monocytogenes clinical isolates. Int J Immunopathol Pharmacol 22: 183193.
  • Frank, J.F., and Koffi, R.A. (1990) Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. J Food Prot 53: 550554.
  • Fratamico, P.M., Bhunia, A.K., and Smith, J.L. (2005) Foodborne Pathogens: Microbiology and Molecular Biology. Norwich, UK: Caister Academic Press.
  • Garmyn, D., Gal, L., Lemaitre, J.P., Hartmann, A., and Piveteau, P. (2009) Communication and autoinduction in the species Listeria monocytogenes: a central role for the agr system. Commun Integr Biol 2: 371374.
  • Gnanou Besse, N., Beaufort, A., Rudelle, S., Denis, C., and Lombard, B. (2008) Evaluation of an enumeration method for Listeria monocytogenes at low contamination levels in cold-smoked salmon. Int J Food Microbiol 124: 271274.
  • Götz, F. (2002) Staphylococcus and biofilms. Mol Microbiol 43: 13671378.
  • Gounadaki, A.S., Skandamis, P.N., Drosinos, E.H., and Nychas, G.J. (2008) Microbial ecology of food contact surfaces and products of small-scale facilities producing traditional sausages. Food Microbiol 25: 313323.
  • Gründling, A., Burrack, L.S., Bouwer, H.G., and Higgins, D.E. (2004) Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci USA 101: 1231812323.
  • Guedon, E., Payot, S., Desvaux, M., and Petitdemange, H. (2000) Relationships between cellobiose catabolism, enzyme levels, and metabolic intermediates in Clostridium cellulolyticum grown in a synthetic medium. Biotechnol Bioeng 67: 327335.
  • Gueriri, I., Cyncynatus, C., Dubrac, S., Arana, A.T., Dussurget, O., and Msadek, T. (2008) The DegU orphan response regulator of Listeria monocytogenes autorepresses its own synthesis and is required for bacterial motility, virulence and biofilm formation. Microbiology 154: 22512264.
  • Guillier, L., Stahl, V., Hezard, B., Notz, E., and Briandet, R. (2008) Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves. Int J Food Microbiol 128: 5157.
  • Habimana, O., Meyrand, M., Meylheuc, T., Kulakauskas, S., and Briandet, R. (2009) Genetic features of resident biofilms determine attachment of Listeria monocytogenes. Appl Environ Microbiol 75: 78147821.
  • Hall-Stoodley, L., and Stoodley, P. (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13: 228233.
  • Hamon, M., Bierne, H., and Cossart, P. (2006) Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4: 423434.
  • Hardman, A.M., Stewart, G.S., and Williams, P. (1998) Quorum sensing and the cell–cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria. Antonie Van Leeuwenhoek 74: 199210.
  • Harmsen, M., Lappann, M., Knochel, S., and Molin, S. (2010) The role of extra-cellular DNA during biofilm formation of Listeria monocytogenes. Appl Environ Microbiol 76: 36253636.
  • Hefford, M.A., D'Aoust, S., Cyr, T.D., Austin, J.W., Sanders, G., Kheradpir, E., and Kalmokoff, M.L. (2005) Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568. Can J Microbiol 51: 197208.
  • Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernandez, R.C., and Ala'Aldeen, D. (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68: 692744.
  • Hengge, R. (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7: 263273.
  • Henrichsen, J. (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36: 478503.
  • Hinsa, S.M., Espinosa-Urgel, M., Ramos, J.L., and O'Toole, G.A. (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49: 905918.
  • ICMSF [International Commission on Microbiological Specifications for Foods of the International Union of Biological Societies] (1996) Micro-Organisms in Foods: Microbiological Specifications of Food Pathogens. London, UK: Blackie Academic & Professional.
  • Izano, E.A., Amarante, M.A., Kher, W.B., and Kaplan, J.B. (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74: 470476.
  • Jordan, S.J., Perni, S., Glenn, S., Fernandes, I., Barbosa, M., Sol, M., et al. (2008) Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates. Appl Environ Microbiol 74: 54515456.
  • Kalmokoff, M.L., Austin, J.W., Wan, X.D., Sanders, G., Banerjee, S., and Farber, J.M. (2001) Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J Appl Microbiol 91: 725734.
  • Kirkpatrick, C.L., and Viollier, P.H. (2010) Cell dispersal in biofilms: an extracellular DNA masks nature's strongest glue. Mol Microbiol 77: 801804.
  • Knudsen, G.M., Olsen, J.E., and Dons, L. (2004) Characterization of DegU, a response regulator in Listeria monocytogenes, involved in regulation of motility and contributes to virulence. FEMS Microbiol Lett 240: 171179.
  • Koutsoumanis, K., Pavlis, A., Nychas, G.J., and Xanthiakos, K. (2010) Probabilistic model for Listeria monocytogenes growth during distribution, retail storage, and domestic storage of pasteurized milk. Appl Environ Microbiol 76: 21812191.
  • Kreft, J.U., and Wimpenny, J.W.T. (2001) Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43: 135141.
  • Kushwaha, K., and Muriana, P.M. (2009) Adherence characteristics of Listeria strains isolated from three ready-to-eat meat processing plants. J Food Prot 72: 21252131.
  • Lasa, I. (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9: 2128.
  • Lasa, I., and Penadés, J.R. (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157: 99107.
  • Latasa, C., Roux, A., Toledo-Arana, A., Ghigo, J.M., Gamazo, C., Penades, J.R., and Lasa, I. (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58: 13221339.
  • Lemon, K.P., Higgins, D.E., and Kolter, R. (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189: 44184424.
  • Lemon, K.P., Freitag, N.E., and Kolter, R. (2010) The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes. J Bacteriol 192: 39693976.
  • Leriche, V., Chassaing, D., and Carpentier, B. (1999) Behaviour of Listeria monocytogenes in an artificially made biofilm of a nisin-producing strain of Lactococcus lactis. Int J Food Microbiol 51: 169182.
  • Lindén, S.K., Bierne, H., Sabet, C., Png, C.W., Florin, T.H., McGuckin, M.A., and Cossart, P. (2008) Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch Microbiol 190: 101104.
  • Little, C.L., Pires, S.M., Gillespie, I.A., Grant, K., and Nichols, G.L. (2010) Attribution of human Listeria monocytogenes infections in England and Wales to ready-to-eat food sources placed on the market: adaptation of the hald Salmonella source attribution model. Foodborne Pathog Dis 7: 749756.
  • Liu, D., Lawrence, M.L., Gorski, L., Mandrell, R.E., Ainsworth, A.J., and Austin, F.W. (2006) Listeria monocytogenes serotype 4b strains belonging to lineages I and III possess distinct molecular features. J Clin Microbiol 44: 214217.
  • Liu, L., O'Conner, P., Cotter, P.D., Hill, C., and Ross, R.P. (2008) Controlling Listeria monocytogenes in Cottage cheese through heterologous production of enterocin A by Lactococcus lactis. J Appl Microbiol 104: 10591066.
  • Longhi, C., Scoarughi, G.L., Poggiali, F., Cellini, A., Carpentieri, A., Seganti, L., et al. (2008) Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb Pathog 45: 4552.
  • Lunden, J.M., Miettinen, M.K., Autio, T.J., and Korkeala, H.J. (2000) Persistent Listeria monocytogenes strains show enhanced adherence to food contact surface after short contact times. J Food Prot 63: 12041207.
  • Marsh, E.J., Luo, H., and Wang, H. (2003) A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett 228: 203210.
  • Mataragas, M., Stergiou, V., and Nychas, G.J. (2008) Modeling survival of Listeria monocytogenes in the traditional Greek soft cheese Katiki. J Food Prot 71: 18351845.
  • Michel, E., Mengaud, J., Galsworthy, S., and Cossart, P. (1998) Characterization of a large motility gene cluster containing the cheR, motAB genes of Listeria monocytogenes and evidence that PrfA downregulates motility genes. FEMS Microbiol Lett 169: 341347.
  • Miller, M.B., and Bassler, B.L. (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165199.
  • Moltz, A.G., and Martin, S.E. (2005) Formation of biofilms by Listeria monocytogenes under various growth conditions. J Food Prot 68: 9297.
  • Monk, I.R., Cook, G.M., Monk, B.C., and Bremer, P.J. (2004) Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl Environ Microbiol 70: 66866694.
  • Moretro, T., and Langsrud, S. (2004) Listeria monocytogenes : biofilm formation and persistence in food processing environments. Biofilms 1: 107121.
  • Norwood, D.E., and Gilmour, A. (1999) Adherence of Listeria monocytogenes strains to stainless steel coupons. J Appl Microbiol 86: 576582.
  • de Nys, R., Givskov, M., Kumar, N., Kjelleberg, S., and Steinberg, P.D. (2006) Furanones. Prog Mol Subcell Biol 42: 5586.
  • O'Brien, M., Hunt, K., McSweeney, S., and Jordan, K. (2009) Occurrence of foodborne pathogens in Irish farmhouse cheese. Food Microbiol 26: 910914.
  • O'Neil, H.S., and Marquis, H. (2006) Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 74: 66756681.
  • O'Neill, E., Pozzi, C., Houston, P., Humphreys, H., Robinson, D.A., Loughman, A., et al. (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190: 38353850.
  • O'Toole, G., Kaplan, H.B., and Kolter, R. (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54: 4979.
  • Pan, Y., Breidt, F., Jr, and Kathariou, S. (2006) Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72: 77117717.
  • Pan, Y., Breidt, F., Jr, and Kathariou, S. (2009) Competition of Listeria monocytogenes serotype 1/2a and 4b strains in mixed-culture biofilms. Appl Environ Microbiol 75: 58465852.
  • Panagou, E.Z., and Nychas, G.J. (2008) Dynamic modeling of Listeria monocytogenes growth in pasteurized vanilla cream after postprocessing contamination. J Food Prot 71: 18281834.
  • Payot, S., Guedon, E., Desvaux, M., Gelhaye, E., and Petitdemange, E. (1999) Effect of dilution rate, cellobiose and ammonium availabilities on Clostridium cellulolyticum sporulation. Appl Microbiol Biotechnol 52: 670674.
  • Peel, M., Donachie, W., and Shaw, A. (1988) Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J Gen Microbiol 134: 21712178.
  • Pintado, C.M., Grant, K.A., Halford-Maw, R., Hampton, M.D., Ferreira, M.A., and McLauchlin, J. (2009) Association between a case study of asymptomatic ovine listerial mastitis and the contamination of soft cheese and cheese processing environment with Listeria monocytogenes in Portugal. Foodborne Pathog Dis 6: 569575.
  • Planchon, S., Chambon, C., Desvaux, M., Chafsey, I., Leroy, S., Talon, R., and Hébraud, M. (2007) Proteomic analysis of cell envelope from Staphylococcus xylosus C2a, a coagulase-negative Staphylococcus. J Proteome Res 6: 35663580.
  • Planchon, S., Desvaux, M., Chafsey, I., Chambon, C., Leroy, S., Hébraud, M., and Talon, R. (2009) Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm. J Proteome Res 8: 17971809.
  • Poimenidou, S., Belessi, C.A., Giaouris, E.D., Gounadaki, A.S., Nychas, G.J., and Skandamis, P.N. (2009) Listeria monocytogenes attachment to and detachment from stainless steel surfaces in a simulated dairy processing environment. Appl Environ Microbiol 75: 71827188.
  • Qin, Z., Ou, Y., Yang, L., Zhu, Y., Tolker-Nielsen, T., Molin, S., and Qu, D. (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153: 20832092.
  • Ragon, M., Wirth, T., Hollandt, F., Lavenir, R., Lecuit, M., Le Monnier, A., and Brisse, S. (2008) A new perspective on Listeria monocytogenes evolution. PLoS Pathog 4: e1000146.
  • Rice, S.A., Givskov, M., Steinberg, P., and Kjelleberg, S. (1999) Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J Mol Microbiol Biotechnol 1: 2331.
  • Rice, S.A., McDougald, D., Kumar, N., and Kjelleberg, S. (2005) The use of quorum-sensing blockers as therapeutic agents for the control of biofilm-associated infections. Curr Opin Investig Drugs 6: 178184.
  • Rice, K.C., Mann, E.E., Endres, J.L., Weiss, E.C., Cassat, J.E., Smeltzer, M.S., and Bayles, K.W. (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 104: 81138118.
  • Riedel, C.U., Monk, I.R., Casey, P.G., Waidmann, M.S., Gahan, C.G., and Hill, C. (2009) AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 71: 11771189.
  • Riemann, H.P., and Cliver, D.O. (2006) Foodborne Infections and Intoxications, 3rd edn. Amsterdam, the Netherlands: Elsevier Academic Press.
  • Rieu, A., Weidmann, S., Garmyn, D., Piveteau, P., and Guzzo, J. (2007) Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. Appl Environ Microbiol 73: 61256133.
  • Rieu, A., Lemaitre, J.P., Guzzo, J., and Piveteau, P. (2008a) Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus. Int J Food Microbiol 126: 7682.
  • Rieu, A., Briandet, R., Habimana, O., Garmyn, D., Guzzo, J., and Piveteau, P. (2008b) Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74: 44914497.
  • Roche, S.M., Velge, P., Bottreau, E., Durier, C., Marquet-van der Mee, N., and Pardon, P. (2001) Assessment of the virulence of Listeria monocytogenes: agreement between a plaque-forming assay with HT-29 cells and infection of immunocompetent mice. Int J Food Microbiol 68: 3344.
  • Roche, S.M., Gracieux, P., Albert, I., Gouali, M., Jacquet, C., Martin, P.M., and Velge, P. (2003) Experimental validation of low virulence in field strains of Listeria monocytogenes. Infect Immun 71: 34293436.
  • Sanchez-Campillo, M., Dramsi, S., Gomez-Gomez, J.M., Michel, E., Dehoux, P., Cossart, P., et al. (1995) Modulation of DNA topology by flaR, a new gene from Listeria monocytogenes. Mol Microbiol 18: 801811.
  • Sasahara, K.C., and Zottola, E.A. (1993) Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganism in flowing system. J Food Prot 56: 10221028.
  • Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W., and Davies, D.G. (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184: 11401154.
  • Schirm, M., Kalmokoff, M., Aubry, A., Thibault, P., Sandoz, M., and Logan, S.M. (2004) Flagellin from Listeria monocytogenes is glycosylated with β-O-linked N-acetylglucosamine. J Bacteriol 186: 67216727.
  • Schuchat, A., Swaminathan, B., and Broome, C.V. (1991) Epidemiology of human listeriosis. Clin Microbiol Rev 4: 169183.
  • Scortti, M., Monzo, H.J., Lacharme-Lora, L., Lewis, D.A., and Vazquez-Boland, J.A. (2007) The PrfA virulence regulon. Microbes Infect 9: 11961207.
  • Seeliger, H.P., and Hohne, K. (1979) Serotyping of Listeria monocytogenes and related species. Methods Microbiol 13: 3149.
  • Seeliger, H.P.R., and Jones, D. (1986) Listeria. In Bergey's Manual of Systematic Bacteriology, 1st Edition. Volume 2: Gram-positive Bacteria other than Actinomycetes. Holt, J.G. (ed.). Baltimore: Williams & Wilkins, pp. 12351245.
  • Sela, S., Frank, S., Belausov, E., and Pinto, R. (2006) A mutation in the luxS gene influences Listeria monocytogenes biofilm formation. Appl Environ Microbiol 72: 56535658.
  • Shen, A., Kamp, H.D., Grundling, A., and Higgins, D.E. (2006) A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev 20: 32833295.
  • Shimoji, Y., Ogawa, Y., Osaki, M., Kabeya, H., Maruyama, S., Mikami, T., and Sekizaki, T. (2003) Adhesive surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens. J Bacteriol 185: 27392748.
  • Sleator, R.D., Watson, D., Hill, C., and Gahan, C.G. (2009) The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology 155: 24632475.
  • Smoot, L.M., and Pierson, M.D. (1998) Influence of environmental stress on the kinetics and strength of attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel. J Food Prot 61: 12861292.
  • Stewart, P.S., and Franklin, M.J. (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6: 199210.
  • Sutherland, I.W. (2001) The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9: 222227.
  • Takahashi, H., Miya, S., Igarashi, K., Suda, T., Kuramoto, S., and Kimura, B. (2009) Biofilm formation ability of Listeria monocytogenes isolates from raw ready-to-eat seafood. J Food Prot 72: 14761480.
  • Taylor, C.M., Beresford, M., Epton, H.A., Sigee, D.C., Shama, G., Andrew, P.W., and Roberts, I.S. (2002) Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 184: 621628.
  • Tessema, G.T., Moretro, T., Kohler, A., Axelsson, L., and Naterstad, K. (2009) Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P. Appl Environ Microbiol 75: 69736980.
  • Tilney, L.G., and Portnoy, D.A. (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109: 15971608.
  • Todhanakasem, T., and Young, G.M. (2008) Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms. J Bacteriol 190: 60306034.
  • Toledo-Arana, A., Valle, J., Solano, C., Arrizubieta, M.J., Cucarella, C., Lamata, M., et al. (2001) The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67: 45384545.
  • Tremoulet, F., Duche, O., Namane, A., Martinie, B., and Labadie, J.C. (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210: 2531.
  • Tresse, O., Lebret, V., Benezech, T., and Faille, C. (2006) Comparative evaluation of adhesion, surface properties, and surface protein composition of Listeria monocytogenes strains after cultivation at constant pH of 5 and 7. J Appl Microbiol 101: 5362.
  • Tresse, O., Lebret, V., Garmyn, D., and Dussurget, O. (2009) The impact of growth history and flagellation on the adhesion of various Listeria monocytogenes strains to polystyrene. Can J Microbiol 55: 189196.
  • Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P., and Ghigo, J.M. (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci USA 103: 1255812563.
  • Vatanyoopaisarn, S., Nazli, A., Dodd, C.E., Rees, C.E., and Waites, W.M. (2000) Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol 66: 860863.
  • Vazquez-Boland, J.A., Kuhn, A., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., et al. (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14: 584640.
  • van der Veen, S., and Abee, T. (2010) Dependence of continuous-flow biofilm formation by Listeria monocytogenes EGD-e on SOS response factor YneA. Appl Environ Microbiol 76: 19921995.
  • Vilain, S., Pretorius, J.M., Theron, J., and Brozel, V.S. (2009) DNA as an adhesin: bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75: 28612868.
  • Vu, B., Chen, M., Crawford, R.J., and Ivanova, E.P. (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14: 25352554.
  • Waters, C.M., and Bassler, B.L. (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319346.
  • Wen, Z.T., and Burne, R.A. (2004) LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186: 26822691.
  • Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C., and Mattick, J.S. (2002) Extracellular DNA required for bacterial biofilm formation. Science 295: 1487.
  • Whitfield, C. (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34: 415420.
  • Wood, T.K. (2009) Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 11: 115.
  • Woodward, J.J., Iavarone, A.T., and Portnoy, D.A. (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328: 17031705.
  • Zameer, F., Gopal, S., Krohne, G., and Kreft, J. (2010) Development of a biofilm model for Listeria monocytogenes EGD-e. World J Microbiol Biotechnol 26: 11431147.
  • Zhao, T., Doyle, M.P., and Zhao, P. (2004) Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms. Appl Environ Microbiol 70: 39964003.
  • Zottola, E.A., and Sasahara, K.C. (1994) Microbial biofilms in the food processing industry – should they be a concern? Int J Food Microbiol 23: 125148.