SEARCH

SEARCH BY CITATION

References

  • Alber, B.E. (2010) Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 89: 1725.
  • Anthony, C. (1982) The Biochemistry of Methylotrophs. London, UK: Academic Press.
  • Anthony, C. (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428: 29.
  • Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302: 286290.
  • Baani, M., and Liesack, W. (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 105: 1020310208.
  • Baker, S.C., Ferguson, S.J., Ludwig, B., Page, M.D., Richter, O.M., and van Spanning, R.J. (1998) Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62: 10461078.
  • Balasubramanian, R., Smith, S.M., Rawat, S., Yatsunyk, L.A., Stemmler, T.L., and Rosenzweig, A.C. (2010) Oxidation of methane by a biological dicopper centre. Nature 46: 115119.
  • Barber, R.D., and Donohue, T.J. (1998) Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37: 530537.
  • Bauer, M., Lombardot, T., Teeling, H., Ward, N.L., Amann, R.I., and Glöckner, F.O. (2004) Archaea-like genes for C1-transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum. J Mol Evol 59: 571586.
  • Baxter, N.J., Scanlan, J., De Marco, P., Wood, A.P., and Murrell, J.C. (2002) Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol 68: 289296.
  • Boden, R., Borodina, E., Wood, A.P., Kelly, D.P., Murrell, J.C., and Schäfer, H. (2011) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193: 12501258.
  • Bosch, G., Skovran, E., Xia, Q., Wang, T., Taub, F., Miller, J.A., et al. (2008) Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 8: 34943505.
  • Bosch, G., Wang, T., Latypova, E., Kalyuzhnaya, M.G., Hackett, M., and Chistoserdova, L. (2009) Insights into the physiology of Methylotenera mobilis as revealed by metagenome-based shotgun proteomic analysis. Microbiol 155: 11031110.
  • Brautaset, T., Jakobsen, M.Ø.M., Flickinger, M.C., Valla, S., and Ellingsen, T.E. (2004) Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 186: 12291238.
  • Brochier, C., and Philippe, H. (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417: 244.
  • Bystrykh, L.V., Vonck, J., van Bruggen, E.F., van Beeumen, J., Samyn, B., Govorukhina, N.I., et al. (1993) Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N′-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J Bacteriol 175: 18141822.
  • Chen, Y., Crombie, A., Rahman, M.T., Dedysh, S.N., Liesack, W., Stott, M.B., et al. (2010a) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192: 38403841.
  • Chen, Y., Scanlan, J., Song, L., Crombie, A., Rahman, M.T., Schäfer, H., and Murrell, J.C. (2010b) {gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris. Appl Environ Microbiol 76: 45304537.
  • Chen, Y., McAleer, K.L., and Murrell, J.C. (2010c) Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium, Agrobacterium tumefaciens. Appl Environ Microbiol 76: 41024104.
  • Chistoserdov, A.Y., Chistoserdova, L.V., McIntire, W.S., and Lidstrom, M.E. (1994) Genetic organization of the mau cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176: 40524065.
  • Chistoserdova, L.V., and Lidstrom, M.E. (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176: 19571968.
  • Chistoserdova, L., and Lidstrom, M.E. (1997) Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiol 143: 17291736.
  • Chistoserdova, L., Vorholt, J.A., Thauer, R.K., and Lidstrom, M.E. (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281: 99102.
  • Chistoserdova, L., Gomelsky, L., Vorholt, J.A., Gomelsky, M., Tsygankov, Y.D., Thauer, R.K., and Lidstrom, M.E. (2000) Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiol 146: 233238.
  • Chistoserdova, L., Chen, S.W., Lapidus, A., and Lidstrom, M.E. (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185: 29802987.
  • Chistoserdova, L., Jenkins, C., Kalyuzhnaya, M.G., Marx, C.J., Lapidus, A., Vorholt, J.A., et al. (2004a) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21: 12341241.
  • Chistoserdova, L., Laukel, M., Portais, J.C., Vorholt, J.A., and Lidstrom, M.E. (2004b) Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186: 2228.
  • Chistoserdova, L., Kalyuzhnaya, M.G., and Lidstrom, M.E. (2005a) C1 transfer modules: from genomics to ecology. ASM News 71: 521528.
  • Chistoserdova, L., Vorholt, J.A., and Lidstrom, M.E. (2005b) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6: 208.
  • Chistoserdova, L., Rasche, M.E., and Lidstrom, M.E. (2005c) Novel dephospho-tetrahydromethanopterin biosynthesis genes discovered via mutagenesis in Methylobacterium extorquens AM1. J Bacteriol 187: 25082512.
  • Chistoserdova, L., Crowther, G.J., Vorholt, J.A., Skovran, E., Portais, J.C., and Lidstrom, M.E. (2007a) Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189: 90769081.
  • Chistoserdova, L., Lapidus, A., Han, C., Goodwin, L., Saunders, L., Brettin, T., et al. (2007b) Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol 189: 40204027.
  • Chistoserdova, L., Kalyuzhnaya, M.G., and Lidstrom, M.E. (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63: 477499.
  • Crowther, G.J., Kosály, G., and Lidstrom, M.E. (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190: 50575062.
  • Davidson, V.L. (2004) Electron transfer in quinoproteins. Arch Biochem Biophys 428: 3240.
  • De Boer, L., Brouwer, J.W., Van Hassel, C.W., Levering, P.R., and Dijkhuizen, L. (1989) Nitrogen metabolism in the facultative methylotroph Arthrobacter P1 grown with various amines or ammonia as nitrogen sources. Antonie Van Leeuwenhoek 56: 221232.
  • Dedysh, S.N., Liesack, W., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., et al. (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50: 955969.
  • Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., et al. (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106: 1642816433.
  • Denef, V.J., Patrauchan, M.A., Florizone, C., Park, J., Tsoi, T.V., Verstraete, W., et al. (2005) Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187: 79968005.
  • Di Giulio, M. (2003) The ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224: 277283.
  • Erb, T.J., Berg, I.A., Brecht, V., Müller, M., Fuchs, G., and Alber, B.E. (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalyl-CoA pathway. Proc Natl Acad Sci USA 104: 1063110636.
  • Erb, T.J., Rétey, J., Fuchs, G., and Alber, B.E. (2008) Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J Biol Chem 283: 3228332293.
  • Erb, T.J., Frerichs-Revermann, L., Fuchs, G., and Alber, B.E. (2010) The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-Malyl-coenzyme A (CoA)/{beta}-methylmalyl-CoA lyase and (3S)-Malyl-CoA thioesterase. J Bacteriol 192: 12491258.
  • Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543548.
  • Gak, E.R., Chistoserdov, A.Y., and Lidstrom, M.E. (1995) Cloning, sequencing, and mutation of a gene for azurin in Methylobacillus flagellatum KT. J Bacteriol 177: 45754578.
  • Giovannoni, S.J., Hayakawa, D.H., Tripp, H.J., Stingl, U., Givan, S.A., Cho, J.C., et al. (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10: 17711782.
  • Goenrich, M., Bartoschek, S., Hagemeier, C.H., Griesinger, C., and Vorholt, J.A. (2002) A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J Biol Chem 277: 30693072.
  • Greenberg, D.E., Porcella, S.F., Zelazny, A.M., Virtaneva, K., Sturdevant, D.E., Kupko, J.J., 3rd, et al. (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189: 87278736.
  • Hagemeier, C.H., Chistoserdova, L., Lidstrom, M.E., Thauer, R.K., and Vorholt, J.A. (2000) Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267: 37623769.
  • Hakemian, A.S., and Rosenzweig, A.C. (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76: 223241.
  • Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokhsar, D., Richardson, P.M., and DeLong, E.F. (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305: 14571462.
  • Harms, N., Ras, J., Koning, S., Reijnders, W.N.M., Stouthamer, A.H., and van Spanning, R.G.M. (1996) Genetics of C1 metabolism regulation in Paracoccus denitrificans. In Microbial Growth on C1 Compounds. Lidstrom, M.E., and Tabita, F.R. (eds). Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 126132.
  • Hartmann, C., and McIntire, W.S. (1997) Amine-oxidizing quinoproteins. Methods Enzymol 280: 98150.
  • Hendrickson, E.L., Beck, D.A.C., Wang, T., Lidstrom, M.E., Hackett, M., and Chistoserdova, L. (2010) The expressed genome of Methylobacillus flagellatus defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 192: 48594867.
  • Hou, S., Makarova, K.S., Saw, J.H., Senin, P., Ly, B.V., Zhou, Z., et al. (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3: 26.
  • Howard, E.C., Sun, S., Reisch, C.R., Del Valle, D.A., Bürgmann, H., Kiene, R.P., and Moran, M.A. (2011) Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl Environ Microbiol 77: 524531.
  • Jensen, L.M., Sanishvili, R., Davidson, V.L., and Wilmot, C.M. (2010) In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science 327: 13921394.
  • Kalyuzhnaya, M.G., Martens-Habbena, W., Wang, T., Hackett, M., Stolyar, S.M., Stahl, D.A., et al. (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1: 385392.
  • Kalyuzhnaya, M.G., and Lidstrom, M.E. (2003) QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 185: 12291235.
  • Kalyuzhnaya, M.G., and Lidstrom, M.E. (2005) QscR-mediated transcriptional activation of serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 187: 75117517.
  • Kalyuzhnaya, M.G., Korotkova, N., Crowther, G., Marx, C.J., Lidstrom, M.E., and Chistoserdova, L. (2005a) Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J Bacteriol 187: 46074614.
  • Kalyuzhnaya, M.G., Bowerman, S., Nercessian, O., Lidstrom, M.E., and Chistoserdova, L. (2005b) Highly divergent genes for methanopterin-linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection. Appl Environ Microbiol 71: 88468854.
  • Kalyuzhnaya, M.G., De Marco, P., Bowerman, S., Pacheco, C.C., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. (2006a) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56: 25172522.
  • Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. (2006b) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56: 28192823.
  • Kalyuzhnaya, M.G., Lapidus, A., Ivanova, N., Copeland, A.C., McHardy, A.C., Szeto, E., et al. (2008a) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26: 10291034.
  • Kalyuzhnaya, M.G., Hristova, K.R., Lidstrom, M.E., and Chistoserdova, L. (2008b) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190: 38173823.
  • Kane, S.R., Chakicherla, A.Y., Chain, P.S., Schmidt, R., Shin, M.W., Legler, T.C., et al. (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189: 19311945. Erratum (2007) J Bacteriol189: 4973.
  • Kang, I., Oh, H.M., Lim, S.I., Ferriera, S., Giovannoni, S.J., and Cho, J.C. (2010) Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin. J Bacteriol 192: 47984799.
  • Kao, W.C., Chen, Y.R., Yi, E.C., Lee, H., Tian, Q., Wu, K.M., et al. (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279: 5155451560.
  • Kaserer, H. (1906) The oxidation of hydrogen and methane by microorganisms. Zbl Bact Parasitenk 15: 573576. (In German).
  • Kato, N., Yurimoto, H., and Thauer, R.K. (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70: 1021.
  • Kelly, D.P., and Murrell, J.C. (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172: 341834.
  • Klein, C.R., Kesseler, F.P., Perrei, C., Frank, J., Duine, J.A., and Schwartz, A.C. (1994) A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor. Biochem J 301: 289295.
  • Knittel, K., and Boetius, A. (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63: 311334.
  • Latypova, E., Yang, S., Wang, Y.S., Wang, T., Chavkin, T.A., Hackett, M., et al. (2010) Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol Microbiol 75: 426439.
  • Laukel, M., Chistoserdova, L., Lidstrom, M.E., and Vorholt, J.A. (2003) The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270: 325333.
  • Lee, M.C., Chou, H.H., and Marx, C.J. (2009) Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Evolution 63: 28162830.
  • Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M., and Vuilleumier, S. (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5: 237248.
  • Lidstrom, M.E. (2006) Aerobic methylotrophic procaryotes. In The Prokaryotes. Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (eds). New York, NY, USA: Springer-Verlag, pp. 618634.
  • Lidstrom, M.E., Anthony, C., Biville, F., Gasser, F., Goodwin, P., Hanson, R.S., and Harms, N. (1994) New unified nomenclature for genes involved in the oxidation of methanol in gram-negative bacteria. FEMS Microbiol Lett 117: 103106.
  • Liffourrena, A.S., Salvano, M.A., and Lucchesi, G.I. (2010) Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways. Arch Microbiol 192: 471476.
  • McCarren, J., Becker, J.W., Repeta, D.J., Shi, Y., Young, C.R., Malmstrom, R.R., et al. (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA 107: 1642016427.
  • Marx, C.J., and Lidstrom, M.E. (2004) Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch. Microbiology 150: 919.
  • Marx, C.J., Chistoserdova, L., and Lidstrom, M.E. (2003a) Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185: 71607168.
  • Marx, C.J., Laukel, M., Vorholt, J.A., and Lidstrom, M.E. (2003b) Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J Bacteriol 185: 71697175.
  • Marx, C.J., Miller, J.A., Chistoserdova, L., and Lidstrom, M.E. (2004) Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. J Bacteriol 186: 21732178.
  • Marx, C.J., Van Dien, S.J., and Lidstrom, M.E. (2005) Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism. PLoS Biol 3: e16.
  • Meschi, F., Wiertz, F., Klauss, L., Cavalieri, C., Blok, A., Ludwig, B., et al. (2010) Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex. J Am Chem Soc 32: 1453714545.
  • Moran, M.A., Buchan, A., González, J.M., Heidelberg, J.F., Whitman, W.B., Kiene, R.P., et al. (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432: 910913.
  • Nagy, P.L., Marolewski, A., Benkovic, S.J., and Zalkin, H. (1995) Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol 177: 12921298.
  • Naqvi, S.W.A., Bange, H.W., Gibb, S.W., Goyet, C., Hatton, A.D., and Upstill-Goddard, R.C. (2005) Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Prog Oceanogr 65: 116144.
  • Okubo, Y., Yang, S., Chistoserdova, L., and Lidstrom, M.E. (2010) Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 192: 18131823.
  • Op den Camp, H.G.M., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., et al. (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1: 293306.
  • Peyraud, R., Kiefer, P., Christen, P., Massou, S., Portais, J.C., and Vorholt, J.A. (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA 106: 48464851.
  • Pomper, B.K., Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1999) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261: 475480.
  • Ras, J., Van Ophem, P.W., Reijnders, W.N., Van Spanning, R.J., Duine, J.A., Stouthamer, A.H., and Harms, N. (1995) Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol 177: 247251.
  • Roca, A., Rodríguez-Herva, J.J., and Ramos, J.L. (2009) Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida. J Bacteriol 191: 33673374.
  • Rusch, D.B., Halpern, A.L., Sutton, G., Heidelberg, K.B., Williamson, S., Yooseph, D., et al. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5: e77.
  • Schäfer, H., Miller, L.G., Oremland, R.S., and Murrell, J.C. (2007) Bacterial cycling of methyl halides. Adv Appl Microbiol 61: 307346.
  • Scheller, S., Goenrich, M., Boecher, R., Thauer, R.K., and Jaun, B. (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465: 606608.
  • Schmidt, S., Christen, P., Kiefer, P., and Vorholt, J.A. (2010) Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology 156: 25752586.
  • Singh, B.K., Bardgett, R.D., Smith, P., and Reay, D.S. (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8: 779790.
  • Söhngen, N.L. (1906) Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen. Zbl Bact Parasitenk 15: 513517. (In German).
  • Sowell, S.M., Abraham, P.E., Shah, M., Verberkmoes, N.C., Smith, D.P., Barofsky, D.F., and Giovannoni, S.J. (2010) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J (in press): doi:10.1038/ismej.2010.168.
  • Stein, L.Y., Yoon, S., Semrau, J.D., Dispirito, A.A., Murrell, J.C., Vuilleumier, S., et al. (2010) Genome sequence of the obligate methanotroph, Methylosinus trichosporium strain OB3b. J Bacteriol 192: 64976498.
  • Studer, A., McAnulla, C., Büchele, R., Leisinger, T., and Vuilleumier, S. (2002) Chloromethane-induced genes define a third C1 utilization pathway in Methylobacterium chloromethanicum CM4. J Bacteriol 184: 34763484.
  • Tanaka, N., Kusakabe, Y., Ito, K., Yoshimoto, T., and Nakamura, K.T. (2003) Crystal structure of glutathione-independent formaldehyde dehydrogenase. Chem Biol Interact 143–144: 211218.
  • Tavormina, P.L., Orphan, V.J., Kalyuzhnaya, M.G., Jetten, M.S.M., and Klotz, M.G. (2010) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3: 91100.
  • Thauer, R.K., and Shima, S. (2008) Methane as fuel for anaerobic microorganisms. Ann NY Acad Sci 1125: 158170.
  • Todd, J.D., Curson, A.R., Kirkwood, M., Sullivan, M.J., Green, R.T., and Johnston, A.W. (2011) DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13: 427438.
  • Tripp, H.J., Kitner, J.B., Schwalbach, M.S., Dacey, J.W., Wilhelm, L.J., and Giovannoni, S.J. (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452: 741744.
  • Trotsenko, Y.A., and Murrell, J.C. (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63: 183229.
  • Vannelli, T., Messmer, M., Studer, A., Vuilleumier, S., and Leisinger, T. (1999) A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane. Proc Natl Acad Sci USA 96: 46154620.
  • Vorholt, J.A. (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178: 239249.
  • Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180: 53515356.
  • Vorholt, J.A., Marx, C.J., Lidstrom, M.E., and Thauer, R.K. (2000) Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182: 66456650.
  • Vorholt, J.A., Kalyuzhnaya, M.G., Hagemeier, C.H., Lidstrom, M.E., and Chistoserdova, L. (2005) MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases. J Bacteriol 187: 60696074.
  • Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., and Dedysh, S.N. (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol (in press): doi:10.1099/ijs.0.028118-0.
  • Vuilleumier, S., Chistoserdova, L., Lee, M.-C., Bringel, F., Lajus, A., Zhou, Y., et al. (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4: e5584.
  • Ward, N., Larsen, Ø., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A.S., et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2: e303.
  • Wilce, M.C., Dooley, D.M., Freeman, H.C., Guss, J.M., Matsunami, H., McIntire, W.S., et al. (1997) Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry 36: 1611616133.
  • Williams, P.A., Coates, L., Mohammed, F., Gill, R., Erskine, P.T., Coker, A., et al. (2005) The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallogr D Biol Crystallogr 61: 7579.
  • Wilmot, C.M., and Davidson, V.L. (2009) Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Curr Opin Chem Biol 13: 469474.
  • Wilson, S.M., Gleisten, M.P., and Donohue, T.J. (2008) Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides. Microbiology 154: 296305.
  • Yasueda, H., Kawahara, Y., and Sugimoto, S. (1999) Bacillus subitlis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181: 71547160.
  • Yoch, D.C. (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68: 58045815.
  • Zhang, X., Reddy, S.Y., and Bruice, T.C. (2007) Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase. Proc Natl Acad Sci USA 104: 745749.