SEARCH

SEARCH BY CITATION

References

  • Aguilar-Barajas, E., Díaz-Pérez, C., Ramírez-Díaz, M.I., Riveros-Rosas, H., and Cervantes, C. (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24: 687707.
  • Amouric, A., Appia-Ayme, C., Yarzabal, A., and Bonnefoy, V. (2009) Regulation of the iron and sulfur oxidation pathways in the acidophilic Acidithiobacillus ferrooxidans. Adv Mater Res 71–73: 163166.
  • Auernik, K.S., and Kelly, R.M. (2008) Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl Environ Microbiol 74: 77237732.
  • Auernik, K.S., and Kelly, R.M. (2010) Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth. Appl Environ Microbiol 76: 931935.
  • Auernik, K.S., Maezato, Y., Blum, P.H., and Kelly, R.M. (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74: 682692.
  • Bacelar-Nicolau, P., and Johnson, D.B. (1999) Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65: 585590.
  • Baker, B.J., and Banfield, J.F. (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44: 139152.
  • Bathe, S., and Norris, P.R. (2007) Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 73: 24912497.
  • Bratty, M., Lawrence, R.W., Kratochvil, D., and Marchant, P.B. (2006) Applications of biological H2S production from elemental sulfur in the treatment of heavy metal pollution including acid rock drainage. In 7th International Symposium of Acid Rock Drainage (ICARD). St. Louis, Mo., pp. 271-281.
  • Brierley, J.A. (2008) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94: 27.
  • Bruscella, P., Appia-Ayme, C., Levican, G., Ratouchniak, J., Jedlicki, E., Holmes, D.S., and Bonnefoy, V. (2007) Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiology 153: 102110.
  • Chen, L., Brugger, K., Skovgaard, M., Redder, P., She, Q., Torarinsson, E., et al. (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187: 49924999.
  • Chi, A., Valenzuela, L., Beard, S., Mackey, A.J., Shabanowitz, J., Hunt, D.F., and Jerez, C.A. (2007) Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis. Mol Cell Proteomics 6: 22392251.
  • Crescenzi, F., Crisara, A., d'Angeli, E., and Nardella, A. (2006) Control of acidity development on solid sulphur due to microbial action. Environ Sci Technol 40: 67826786.
  • Dopson, M., and Lindström, E.B. (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65: 3640.
  • Dopson, M., Lindstrom, E.B., and Hallberg, K.B. (2002) ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation. Extremophiles 6: 123129.
  • Hallberg, K.B. (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104: 448453.
  • Hallberg, K.B., Dopson, M., and Lindstrom, E.B. (1996) Reduced sulfur compound oxidation by Thiobacillus caldus. J Bacteriol 178: 611.
  • Hallberg, K.B., Gonzalez-Toril, E., and Johnson, D.B. (2010) Acidithiobacillus ferrivorans, sp nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14: 919.
  • Hallberg, K.B., Grail, B.M., du Plessis, C., and Johnson, D.B. (2011) Reductive dissolution of ferric iron minerals: a new approach for bioprocessing nickel laterites. Miner Eng 24: 620624.
  • Ikumapayi, F.K., Sundkvist, J.-E., and Bolin, N.J. (2009) Treatment of process water from molybdenum flotation. In Conference in Minerals Engineering. Luleå, Sweden.
  • Johnson, D.B. (2010) The biogeochemistry of biomining. In Geomicrobiology: Molecular and Environmental Perspective. Barton, L., Mandl, M., and Loy, A. (eds). Dordrecht, Germany: Springer, pp. 401426.
  • Johnson, D.B., and Hallberg, K.B. (2009) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol 54: 201255.
  • Jones, D.S., Albrecht, H.L., Dawson, K.S., Schaperdoth, I., Freeman, K.H., Pi, Y., et al. (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6: 158170.
  • Kamimura, K., Higashino, E., Kanao, T., and Sugio, T. (2005) Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Extremophiles 9: 4551.
  • Kappler, U., Sly, L.I., and McEwan, A.G. (2005) Respiratory gene clusters of Metallosphaera sedula – differential expression and transcriptional organization. Microbiology 151: 3543.
  • Kelly, D.P. (1999) Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Arch Microbiol 171: 219229.
  • Kletzin, A. (1992) Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermophilic archaeum Desulfurolobus ambivalens. J Bacteriol 174: 58545859.
  • Kucera, J., Bouchal, P., Cerna, H., Potesil, J., Janiczek, O., Zdrahal, Z., and Mandl, M. (2012) Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Antonie Van Leeuwenhoek 101: 561573.
  • Kupka, D., Liljeqvist, M., Nurmi, P., Puhakka, J.A., Tuovinen, O.H., and Dopson, M. (2009) Oxidation of elemental sulfur, tetrathionate, and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3. Res Microbiol 160: 767774.
  • Laeremans, T., Coolsaet, N., Verreth, C., Snoeck, C., Hellings, N., Vanderleyden, J., and Martinez-Romero, E. (1997) Functional redundancy of genes for sulphate activation enzymes in Rhizobium sp. BR816. Microbiology 143: 39333942.
  • Lagace, A. (2010) Development of a thiosulfate treatment system at Xstrata copper Kidd metallurgical site. In Annual Meeting of the Canadian Mineral Processors. Fragomeni, D., and Zinck, J. (eds). Ottowa, Canada: CIM, pp. 8796.
  • Laska, S., Lottspeich, F., and Kletzin, A. (2003) Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology 149: 23572371.
  • Li, M., and Boucher, J.-F. (1999) Thiosalts treatment by bicarbonate addition: a laboratory-scale feasibility study. In. Pointe-Claire, Quebec: Noranda Inc. Technology centre.
  • Liljeqvist, M., Valdes, J., Holmes, D.S., and Dopson, M. (2011a) Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3 provides insights into growth at low temperature by the Acidithiobacilli. J Bacteriol 193: 43044305.
  • Liljeqvist, M., Sundkvist, J.-E., Saleh, A., and Dopson, M. (2011b) Low temperature removal of inorganic sulfur compounds from mining process waters. Biotechnol Bioeng 108: 12511259.
  • Macalady, J.L., Jones, D.S., and Lyon, E.H. (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ Microbiol 9: 14021414.
  • Mangold, S., Valdes, J., Holmes, D.S., and Dopson, M. (2011) Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol 2: 17.
  • Métrich, N., and Mandeville, C.W. (2010) Sulfur in magmas. Elements 6: 8186.
  • Meulenberg, R., Pronk, J.T., Hazeu, W., Bos, P., and Kuenen, J.G. (1992) Oxidation of reduced sulfur compounds by intact cells of Thiobacillus acidophilus. Arch Microbiol 157: 161168.
  • Ňancucheo, I., and Johnson, D.B. (2012) Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microb Biotechnol 5: 3444.
  • Ohmura, N., Sasaki, K., Matsumoto, N., and Saiki, H. (2002) Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184: 20812087.
  • Okabe, S., Odagiri, M., Ito, T., and Satoh, H. (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73: 971980.
  • du Plessis, C.A., Slabbert, W., Hallberg, K.B., and Johnson, D.B. (2011) Ferredox: a biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy 109: 221229.
  • Pronk, J.T., Meulenberg, R., Hazeu, W., Bos, P., and Kuenen, J.G. (1990) Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293306.
  • Quatrini, R., Appia-Ayme, C., Denis, Y., Ratouchniak, J., Veloso, F., Valdes, J., et al. (2006) Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy 83: 263272.
  • Quatrini, R., Appia-Ayme, C., Denis, Y., Jedlicki, E., Holmes, D., and Bonnefoy, V. (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10: 394.
  • Rawlings, D.E., and Johnson, D.B. (2007a) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153: 315324.
  • Rawlings, D.E., and Johnson, D.B. (eds) (2007b) Biomining. Heidelberg, Germany: Springer-Verlag.
  • Reysenbach, A.L., Liu, Y., Banta, A.B., Beveridge, T.J., Kirshtein, J.D., Schouten, S., et al. (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442: 444447.
  • Rohwerder, T., and Sand, W. (2007) Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Eng Life Sci 7: 301309.
  • Rowe, O.F., Sanchez-Espana, J., Hallberg, K.B., and Johnson, D.B. (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9: 17611771.
  • Rzhepishevska, O.I., Valdés, J., Marcinkeviciene, L., Algora Gallardo, C., Meskys, R., Bonnefoy, V., et al. (2007) Regulation of a novel Acidithiobacillus caldus gene cluster involved in reduced inorganic sulfur compound metabolism. Appl Environ Microbiol 73: 73677372.
  • Sääf, S., Sundkvist, J.-E., and Dopson, M. (2009) Psychrotrophic, mesophilic, and moderate thermophilic removal of reduced inorganic sulfur compounds from process waters. In Securing the Future. Skellefteå, Sweden.
  • Sand, W. (1987) Importance of hydrogen sulfide, thiosulfate, and methylmercaptan for growth of Thiobacilli during simulation of concrete corrosion. Appl Environ Microbiol 53: 16451648.
  • Schippers, A., and Sand, W. (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65: 319321.
  • Schippers, A., Jozsa, P.G., and Sand, W. (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62: 34243431.
  • Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock, D., and Wright, T.L. (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104: 342350.
  • Silver, M., and Dinardo, O. (1981) Factors affecting oxidation of thiosalts by Thiobacilli. Appl Environ Microbiol 41: 13011309.
  • Slonczewski, J.L., Fujisawa, M., Dopson, M., and Krulwich, T.A. (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55: 179.
  • Steudel, R. (2000) The chemical sulfur cycle. In Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering. Lens, P., and Hulshoff Pol, L. (eds). London, UK: International Association on Water Quality, pp. 131.
  • Tuovinen, O.H., Kelley, B.C., and Nicholas, D.J. (1975) The uptake and assimilation of sulphate by Thiobacillus ferrooxidans. Arch Microbiol 105: 123127.
  • Vairavamurthy, A., Manowitz, B., Luther, G.W., and Jeon, Y. (1993) Oxidation state of sulfur in thiosulfate and implications for anaerobic energy metabolism. Geochim Cosmochim Acta 57: 16191623.
  • Valdes, J., Veloso, F., Jedlicki, E., and Holmes, D. (2003) Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4: 10.1186/1471-2164-1184-1151.
  • Valdes, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., et al. (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9: 597.
  • Valdes, J., Quatrini, R., Hallberg, K., Dopson, M., Valenzuela, P.D., and Holmes, D.S. (2009) Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J Bacteriol 191: 58775878.
  • Valdes, J., Ossandon, F., Quatrini, R., Dopson, M., and Holmes, D.S. (2011) Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J Bacteriol 193: 70037004.
  • Veith, A., Urich, T., Seyfarth, K., Protze, J., Frazao, C., and Kletzin, A. (2011) Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens. Front Microbiol 2: 37.
  • Vlasceanu, L., Sarbu, S.M., Engel, A.S., and Kinkle, B.K. (2000) Acidic cave-wall biofilms loacated in the Frasissi Gorge, Italy. Geomicrobiol J 17: 125139.
  • Waksman, S.A., and Joffe, J.S. (1922) Microorganisms concerned in the oxidation of sulfur in the soil. II. Thiobacillus thioooxidans, a new sulfur-oxidizng organism. J Bacteriol 7: 239256.
  • Zheng, C., Zhang, Y., Liu, Y., Wu, A., Xia, L., Zeng, J., et al. (2009) Characterization and reconstitute of a [Fe4S4] adenosine 5′-phosphosulfate reductase from Acidithiobacillus ferrooxidans. Curr Microbiol 58: 586592.