SEARCH

SEARCH BY CITATION

References

  • Adams, M.W.W., Holden, J.F., Menon, A.L., Schut, G.J., Grunden, A.M., Hou, C., et al. (2001) Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183: 716724.
  • Allen, J.R., Clark, D.D., Krum, J.G., and Ensign, S.A. (1999) A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc Natl Acad Sci USA 96: 84328437.
  • Blank, C.E. (2009) Phylogenomic dating – the relative antiquity of archaeal metabolic and physiological traits. Astrobiology 9: 193219.
  • Borup, B., and Ferry, J.G. (2000a) O-acetylserine sulfhydrylase from Methanosarcina thermophila. J Bacteriol 182: 4550.
  • Borup, B., and Ferry, J.G. (2000b) Cysteine biosynthesis in the Archaea: Methanosarcina thermophila utilizes O-acetylserine sulfhydrylase. FEMS Microbiol Lett 189: 205210.
  • Boyd, J.M., Pierik, A.J., Netz, D.J.A., Lill, R., and Downs, D.M. (2008) Bacterial ApbC can bind and effectively transfer iron-sulfur clusters. Biochemistry 47: 81958202.
  • Boyd, J.M., Drevland, R.M., Downs, D.M., and Graham, D.E. (2009) Archaeal ApbC/Nbp35 homologs function as iron-sulfur cluster carrier proteins. J Bacteriol 191: 14901497.
  • Bridger, S.L., Clarkson, S.M., Stirrett, K., DeBarry, M.B., Lipscomb, G.L., Schut, G.J., et al. (2011) Deletion strains reveal metabolic roles for key elemental sulfur-responsive proteins in Pyrococcus furiosus. J Bacteriol 193: 64986504.
  • Brochier-Armanet, C., Forterre, P., and Gribaldo, S. (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14: 274281.
  • Cavicchioli, R. (2011) Archaea – timeline of the third domain. Nat Rev Microbiol 9: 5161.
  • Chen, Z.-W., Jiang, C.-Y., She, Q., Liu, S.-J., and Zhou, P.-J. (2005) Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis. Appl Environ Microbiol 71: 621628.
  • Dahl, C., and Trüper, H.G. (2001) Sulfite reductase and APS reductase from Archaeoglobus fulgidus. Methods Enzymol 331: 427441.
  • Dahl, C., Speich, N., and Trüper, H.G. (1994) Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus. Methods Enzymol 243: 331349.
  • Darwin, K.H., and Hofmann, K. (2010) SAMPyling proteins in archaea. Trends Biochem Sci 35: 348351.
  • Das, T.K., Gomes, C.M., Teixeira, M., and Rousseau, D.L. (1999) Redox-linked transient deprotonation at the binuclear site in the aa3-type quinol oxidase from Acidianus ambivalens: implications for proton translocation. Proc Natl Acad Sci USA 96: 95919596.
  • Das, T.K., Gomes, C.M., Bandeiras, T.M., Pereira, M.M., Teixeira, M., and Rousseau, D.L. (2004) Active site structure of the aa3 quinol oxidase of Acidianus ambivalens. Biochim Biophys Acta 1655: 306320.
  • Dirmeier, R., Keller, M., Frey, G., Huber, H., and Stetter, K.O. (1998) Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi. Eur J Biochem 252: 486491.
  • Eccleston, J.F., Petrovic, A., Davis, C.T., Rangachari, K., and Wilson, R.J.M. (2006) The kinetic mechanism of the SufC ATPase. J Biol Chem 281: 83718378.
  • Emmel, T., Sand, W., König, W.A., and Bock, E. (1986) Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyi. J Gen Microbiol 132: 34153420.
  • Fahey, R.C. (2001) Novel thiols of prokaryotes. Annu Rev Microbiol 55: 333356.
  • Fritz, G., Büchert, T., and Kroneck, P.M.H. (2002a) The function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases. J Biol Chem 277: 2606626073.
  • Fritz, G., Roth, A., Schiffer, A., Büchert, T., Bourenkov, G., Bartunik, H.D., et al. (2002b) Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-Å resolution. Proc Natl Acad Sci USA 99: 18361841.
  • Gennis, R.B., and Stewart, V. (1996) Respiration. In Escherichia Coli and Salmonella: Cellular and Molecular Biology. Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., et al. (eds). Washington, DC, USA: ASM Press, pp. 217261.
  • Godert, A.M., Jin, M., McLafferty, F.W., and Begley, T.P. (2007) Biosynthesis of the thioquinolobactin siderophore: an interesting variation on sulfur transfer. J Bacteriol 189: 29412944.
  • Gomes, C.M., Backgren, C., Teixeira, M., Puustinen, A., Verkhovskaya, M.L., Wikström, M., and Verkhovsky, M.I. (2001) Heme-copper oxidases with modified D- and K-pathways are yet efficient proton pumps. FEBS Lett 497: 159164.
  • Graham, D.E. (2011) 2-oxoacid metabolism in methanogenic CoM and CoB biosynthesis. Methods Enzymol 494: 301326.
  • Graham, D.E., and White, R.H. (2002) Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19: 133147.
  • Graham, D.E., Xu, H., and White, R.H. (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. J Biol Chem 277: 1342113429.
  • Graham, D.E., Taylor, S.M., Wolf, R.Z., and Namboori, S.C. (2009) Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Biochem J 424: 467478.
  • Hartmann, R., Sickinger, H.D., and Oesterhelt, D. (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77: 38213825.
  • Hartzell, P., and Reed, D.W. (2006) The genus Archaeoglobus. In The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, USA: Springer, pp. 82100.
  • Hauenstein, S.I., and Perona, J.J. (2008) Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei. J Biol Chem 283: 2200722017.
  • Hausmann, A., Aguilar Netz, D.J., Balk, J., Pierik, A.J., Mühlenhoff, U., and Lill, R. (2005) The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc Natl Acad Sci USA 102: 32663271.
  • Hedderich, R., Klimmek, O., Kröger, A., Dirmeier, R., Keller, M., and Stetter, K.O. (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22: 353381.
  • Helgadóttir, S., Rosas-Sandoval, G., Söll, D., and Graham, D.E. (2007) Biosynthesis of phosphoserine in the Methanococcales. J Bacteriol 189: 575582.
  • Huber, H., and Prangishvili, D. (2006) Sulfolobales . In The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, USA: Springer, pp. 2351.
  • Huber, H., and Stetter, K.O. (2001) Order III: Sulfolobales. In Bergey's Manual of Systematic Bacteriology. Garrity, G. (ed.). New York, USA: Springer-Verlag, pp. 198210.
  • Huber, H., Huber, R., and Stetter, K.O. (2006) Thermoproteales . In The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, USA: Springer, pp. 1022.
  • Huet, G., Daffe, M., and Saves, I. (2005) Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: evidence for its implication in the pathogen's survival. J Bacteriol 187: 61376146.
  • Humbard, M.A., Miranda, H.V., Lim, J.M., Krause, D.J., Pritz, J.R., Zhou, G., et al. (2010) Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463: 5460.
  • Iwasaki, T. (2010) Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. Archaea 2010: 842639. doi:10.1155/2010/842639.
  • Jeong, Y.J., Jeong, B.-C., and Song, H.K. (2011) Crystal structure of ubiquitin-like small archaeal modifier protein 1 (SAMP1) from Haloferax volcanii. Biochem Biophys Res Commun 405: 112117.
  • Johnson, D.C., Dean, D.R., Smith, A.D., and Johnson, M.K. (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74: 247281.
  • Kessler, D. (2006) Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol Rev 30: 825840.
  • Kitabatake, M., So, M.W., Tumbula, D.L., and Söll, D. (2000) Cysteine biosynthesis pathway in the archaeon Methanosarcina barkeri encoded by acquired bacterial genes? J Bacteriol 182: 143145.
  • Kletzin, A. (1989) Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol 171: 16381643.
  • Kletzin, A. (2007) Metabolism of inorganic sulfur compounds in archaea. In Archaea: Evolution, Physiology, and Molecular Biology. Garrett, R.A., and Klenk, H.-P. (eds). Oxford, UK: Blackwell, pp. 261274.
  • Kletzin, A. (2008) Oxidation of sulfur and inorganic sulfur compounds in Acidianus ambivalens. In Microbial Sulfur Metabolism. Dahl, C., and Friedrich, C.G. (eds). Berlin Heidelberg, Germany: Springer-Verlag, pp. 184201.
  • Kletzin, A., Urich, T., Müller, F., Bandeiras, T.M., and Gomes, C.M. (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36: 7791.
  • Krishnakumar, A.M., Sliwa, D., Endrizzi, J.A., Boyd, E.S., Ensign, S.A., and Peters, J.W. (2008) Getting a handle on the role of coenzyme M in alkene metabolism. Microbiol Mol Biol Rev 72: 445456.
  • Lake, M.W., Wuebbens, M.M., Rajagopalan, K.V., and Schindelin, H. (2001) Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414: 325329.
  • Laska, S., Lottspeich, F., and Kletzin, A. (2003) Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology 149: 23572371.
  • Layer, G., Gaddam, S.A., Ayala-Castro, C.N., Ollagnier-de Choudens, S., Lascoux, D., Fontecave, M., and Outten, F.W. (2007) SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly. J Biol Chem 282: 1334213350.
  • Lee, K.-C., Yeo, W.-S., and Roe, J.-H. (2008) Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J Bacteriol 190: 82448247.
  • Leidel, S., Pedrioli, P.G.A., Bucher, T., Brost, R., Costanzo, M., Schmidt, A., et al. (2009) Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458: 228232.
  • Li, M., Chen, Z., Zhang, P., Pan, X., Jiang, C., An, X., et al. (2008) Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis. Biochem Biophys Res Commun 369: 919923.
  • Lill, R. (2009) Function and biogenesis of iron-sulphur proteins. Nature 460: 831838.
  • Liu, S.-J. (2008) Archaeal and bacterial sulfur oxygenase-reductases: genetic diversity and physiological function. In Microbial Sulfur Metabolism. Dahl, C., and Friedrich, C.G. (eds). Berlin Heidelberg, Germany: Springer-Verlag, pp. 217224.
  • Liu, Y., Sieprawska-Lupa, M., Whitman, W.B., and White, R.H. (2010) Cysteine is not the sulfur source for iron-sulfur cluster and methionine biosynthesis in the methanogenic archaeon Methanococcus maripaludis. J Biol Chem 285: 3192331929.
  • Liu, Y., Dos Santos, P.C., Zhu, X., Orlando, R., Dean, D.R., Söll, D., and Yuan, J. (2012a) The catalytic mechanism of Sep-tRNA : Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide. J Biol Chem 287: 54265433.
  • Liu, Y., Beer, L.L., and Whitman, W.B. (2012b) Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20: 251258.
  • McBride, B.C., and Wolfe, R.S. (1971) A new coenzyme of methyl transfer, coenzyme M. Biochemistry 10: 23172324.
  • Makarova, K.S., and Koonin, E.V. (2010) Archaeal ubiquitin-like proteins: functional versatility and putative ancestral involvement in tRNA modification revealed by comparative genomic analysis. Archaea 2010: 710303. doi:10.1155/2010/710303.
  • Marelja, Z., Stöcklein, W., Nimtz, M., and Leimkühler, S. (2008) A novel role for human Nfs1 in the cytoplasm. J Biol Chem 283: 2517825185.
  • Matthies, A., Rajagopalan, K.V., Mendel, R.R., and Leimkühler, S. (2004) Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc Natl Acad Sci USA 101: 59465951.
  • Maupin-Furlow, J. (2011) Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol 10: 100111.
  • Mino, K., and Ishikawa, K. (2003a) A novel O-phospho-L-serine sulfhydrylation reaction catalyzed by O-acetylserine sulfhydrylase from Aeropyrum pernix K1. FEBS Lett 551: 133138.
  • Mino, K., and Ishikawa, K. (2003b) Characterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix K1. J Bacteriol 185: 22772284.
  • Miranda, H.V., Nembhard, N., Su, D., Hepowit, N., Krause, D.J., Pritz, J.R., et al. (2011) E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc Natl Acad Sci USA 108: 44174422.
  • Müller, F.H., Bandeiras, T.M., Urich, T., Teixeira, M., Gomes, C.M., and Kletzin, A. (2004) Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate : quinone oxidoreductase. Mol Microbiol 53: 11471160.
  • Müller, J.A., and DasSarma, S. (2005) Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J Bacteriol 187: 16591667.
  • Mullick Chowdhury, M., Dosche, C., Löhmannsröben, H.-G., and Leimkühler, S. (2012) The dual role of the molybdenum cofactor biosynthesis protein MOCS3 in tRNA thiolation and molybdenum cofactor biosynthesis in humans. J Biol Chem. doi:10.1074/jbc.M112.351429 [published online ahead of print].
  • Netz, D.J.A., Pierik, A.J., Stumpfig, M., Mühlenhoff, U., and Lill, R. (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat Chem Biol 3: 278286.
  • Noll, K.M., Rinehart, K.L., Jr, Tanner, R.S., and Wolfe, R.S. (1986) Structure of component B (7-mercaptoheptanoylthreonine phosphate) of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum. Proc Natl Acad Sci USA 83: 42384242.
  • Oda, Y., Mino, K., Ishikawa, K., and Ataka, M. (2005) Three-dimensional structure of a new enzyme, O-phosphoserine sulfhydrylase, involved in L-cysteine biosynthesis by a hyperthermophilic archaeon, Aeropyrum pernix K1, at 2.0 Å resolution. J Mol Biol 351: 334344.
  • O'Leary, S.N.E., Jurgenson, C.T., Ealick, S.E., and Begley, T.P. (2008) O-Phospho-L-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. Biochemistry 47: 1160611615.
  • Oliveira, T.F., Vonrhein, C., Matias, P.M., Venceslau, S.S., Pereira, I.A.C., and Archer, M. (2008) The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J Biol Chem 283: 3414134149.
  • Oren, A. (1991) Anaerobic growth of halophilic archaeobacteria by reduction of fumarate. J Gen Microbiol 137: 13871390.
  • Oren, A. (2006) The order Halobacteriales. In The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, USA: Springer, pp. 113164.
  • Oren, A., and Trüper, H.G. (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethysulfoxide and trimethylamine N-oxide. FEMS Microbiol Lett 70: 3336.
  • Outten, F.W., Djaman, O., and Storz, G. (2004) A suf operon requirement for Fe–S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52: 861872.
  • Parey, K., Warkentin, E., Kroneck, P.M.H., and Ermler, U. (2010) Reaction cycle of the dissimilatory sulfite reductase from Archaeoglobus fulgidus. Biochemistry 49: 89128921.
  • Pedrioli, P.G.A., Leidel, S., and Hofmann, K. (2008) Urm1 at the crossroad of modifications. EMBO Rep 9: 11961202.
  • Pihl, T.D., Black, L.K., Schulman, B.A., and Maier, R.J. (1992) Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. J Bacteriol 174: 137143.
  • Purschke, W.G., Schmidt, C.L., Petersen, A., and Schäfer, G. (1997) The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179: 13441353.
  • Py, B., and Barras, F. (2010) Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 8: 436446.
  • Ranjan, N., Damberger, F.F., Sutter, M., Allain, F.H.T., and Weber-Ban, E. (2010) Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins. J Mol Biol 405: 10401055.
  • Roy, A., Solodovnikova, N., Nicholson, T., Antholine, W., and Walden, W.E. (2003) A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J 22: 48264835.
  • Sapra, R., Bagramyan, K., and Adams, M.W.W. (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100: 75457550.
  • Sauerwald, A., Zhu, W., Major, T.A., Roy, H., Palioura, S., Jahn, D., et al. (2005) RNA-dependent cysteine biosynthesis in archaea. Science 307: 19691972.
  • Scheller, S., Goenrich, M., Boecher, R., Thauer, R.K., and Jaun, B. (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465: 606608.
  • Schiffer, A., Fritz, G., Kroneck, P.M.H., and Ermler, U. (2006) Reaction mechanism of the iron-sulfur flavoenzyme adenosine-5'-phosphosulfate reductase based on the structural characterization of different enzymatic states. Biochemistry 45: 29602967.
  • Schiffer, A., Parey, K., Warkentin, E., Diederichs, K., Huber, H., Stetter, K.O., et al. (2008) Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Mol Biol 379: 10631074.
  • Schlieker, C.D., Van der Veen, A.G., Damon, J.R., Spooner, E., and Ploegh, H.L. (2008) A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc Natl Acad Sci USA 105: 1825518260.
  • Schut, G.J., Bridger, S.L., and Adams, M.W.W. (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189: 44314441.
  • Solow, B., and White, R.H. (1997) Biosynthesis of the peptide bond in the coenzymeN-(7-mercaptoheptanoyl)-L-threonine phosphate. Arch Biochem Biophys 345: 299304.
  • Sperling, D., Kappler, U., Trüper, H.G., and Dahl, C. (2001) Dissimilatory ATP sulfurylase from Archaeoglobus fulgidus. Methods Enzymol 331: 419427.
  • Stallmeyer, B., Drugeon, G., Reiss, J., Haenni, A.L., and Mendel, R.R. (1999) Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames. Am J Hum Genet 64: 698705.
  • Takahashi, Y., and Tokumoto, U. (2002) A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277: 2838028383.
  • Taylor, C.D., McBride, B.C., Wolfe, R.S., and Bryant, M.P. (1974) Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J Bacteriol 120: 974975.
  • Taylor, S.V., Kelleher, N.L., Kinsland, C., Chiu, H.J., Costello, C.A., Backstrom, A.D., et al. (1998) Thiamin biosynthesis in Escherichia coli. Identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation. J Biol Chem 273: 1655516560.
  • Urich, T., Bandeiras, T.M., Leal, S.S., Rachel, R., Albrecht, T., Zimmermann, P., et al. (2004) The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochem J 381: 137146.
  • Urich, T., Kroke, A., Bauer, C., Seyfarth, K., Reuff, M., and Kletzin, A. (2005) Identification of core active site residues of the sulfur oxygenase reductase from Acidianus ambivalens by site-directed mutagenesis. FEMS Microbiol Lett 248: 171176.
  • Urich, T., Gomes, C.M., Kletzin, A., and Frazão, C. (2006) X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311: 9961000.
  • Vignais, P.M., Billoud, B., and Meyer, J. (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25: 455501.
  • White, R.H. (1988) Characterization of the enzymatic conversion of sulfoacetaldehyde and L-cysteine into coenzyme M (2-mercaptoethanesulfonic acid). Biochemistry 27: 74587462.
  • White, R.H. (1989a) Biosynthesis of the 7-mercaptoheptanoic acid subunit of component B [(7-mercaptoheptanoyl)threonine phosphate] of methanogenic bacteria. Biochemistry 28: 860865.
  • White, R.H. (1989b) Steps in the conversion of alpha-ketosuberate to 7-mercaptoheptanoic acid in methanogenic bacteria. Biochemistry 28: 94179423.
  • White, R.H. (2001) Biosynthesis of the methanogenic cofactors. Vitam Horm 61: 299337.
  • Wuebbens, M.M., and Rajagopalan, K.V. (2003) Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J Biol Chem 278: 1452314532.
  • Yeo, W.-S., Lee, J.-H., Lee, K.-C., and Roe, J.-H. (2006) IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol Microbiol 61: 206218.
  • Zafrilla, B., Martínez-Espinosa, R.M., Esclapez, J., Pérez-Pomares, F., and Bonete, M.J. (2010) SufS protein from Haloferax volcanii involved in Fe-S cluster assembly in haloarchaea. Biochimi Biophys Acta 1804: 14761482.
  • Zimmermann, P., Laska, S., and Kletzin, A. (1999) Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens. Arch Microbiol 172: 7682.