SEARCH

SEARCH BY CITATION

References

  • Ahuja, E.G., Janning, P., Mentel, M., Graebsch, A., Breinbauer, R., Hiller, W., et al. (2008) PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. J Am Chem Soc 130: 1705317061.
  • Banin, E., Vasil, M.L., and Greenberg, E.P. (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102: 1107611081.
  • Bera, A.K., Atanasova, V., Gamage, S., Robinson, H., and Parsons, J.F. (2010) Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes. Acta Crystallogr D Biol Crystallogr 66: 664672.
  • Berlutti, F., Morea, C., Battistoni, A., Sarli, S., Cipriani, P., Superti, F., et al. (2005) Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmacol 18: 661670.
  • Blankenfeldt, W., Kuzin, A.P., Skarina, T., Korniyenko, Y., Tong, L., Bayer, P., et al. (2004) Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proc Natl Acad Sci USA 101: 1643116436.
  • Bringmann, G., Haagen, Y., Gulder, T.A., Gulder, T., and Heide, L. (2007) Biosynthesis of the isoprenoid moieties of furanonaphthoquinone I and endophenazine A in Streptomyces cinnamonensis DSM 1042. J Org Chem 72: 41984204.
  • Brint, J.M., and Ohman, D.E. (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR–RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR–LuxI family. J Bacteriol 177: 71557163.
  • Cabello, F.C. (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8: 11371144.
  • Caldwell, C.C., Chen, Y., Goetzmann, H.S., Hao, Y., Borchers, M.T., Hassett, D.J., et al. (2009) Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 175: 24732488.
  • Chancey, S.T., Wood, D.W., and Pierson, L.S., 3rd (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65: 22942299.
  • Chen, K., Hu, H., Wang, W., Zhang, X., and Xu, Y. (2008) Metabolic degradation of phenazine-1-carboxylic acid by the strain Sphingomonas sp. DP58: the identification of two metabolites. Biodegradation 19: 659667.
  • Curran, B., Jonas, D., Grundmann, H., Pitt, T., and Dowson, C.G. (2004) Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 42: 56445649.
  • Currie, C.R., Poulsen, M., Mendenhall, J., Boomsma, J.J., and Billen, J. (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311: 8183.
  • D'aes, J., Gia, K.H.H., De Maeyer, K., Pannecoucque, J., Forrez, I., Ongena, M., et al. (2011) Biological control of Rhizoctonia root rot on bean by phenazine- and cycliclipopeptide-producing Pseudomonas CMR12a. Phytopathology 101: 9961004.
  • Dantas, G., Sommer, M.O.A., Oluwasegun, R.D., and Church, G.M. (2008) Bacteria subsisting on antibiotics. Science 320: 100103.
  • Davies, J. (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33: 496499.
  • Dietrich, L.E., and Kiley, P.J. (2011) A shared mechanism of SoxR activation by redox-cycling compounds. Mol Microbiol 79: 11191122.
  • Dietrich, L.E.P., Price-Whelan, A., Petersen, A., Whiteley, M., and Newman, D.K. (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61: 13081321.
  • Dubern, J.F., and Diggle, S.P. (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4: 882888.
  • Fajardo, A., and Martinez, J.L. (2008) Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 11: 161167.
  • Finnan, S., Morrissey, J.P., O'Gara, F., and Boyd, E.F. (2004) Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 42: 57835792.
  • Fitzpatrick, D.A. (2009) Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species. J Mol Evol 68: 171185.
  • Flemming, H.C., and Wingender, J. (2010) The biofilm matrix. Nat Rev Microbiol 8: 623633.
  • Fordos, J. (1859) Receuil des Travaux de la Societe d'Emulation pour les Sciences Pharmaceutiques. 3: 30.
  • Fothergill, J.L., Panagea, S., Hart, C.A., Walshaw, M.J., Pitt, T.L., and Winstanley, C. (2007) Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 7: 45.
  • Gessard, C. (1882) Sur les colorations bleue et verte des lignes à pansements. C R Hebd Seances Acad Sci 94: 536538.
  • Gibson, J., Sood, A., and Hogan, D.A. (2009) Pseudomonas aeruginosaCandida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol 75: 504513.
  • Greenhagen, B.T., Shi, K., Robinson, H., Gamage, S., Bera, A.K., Ladner, J.E., and Parsons, J.F. (2008) Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 47: 52815289.
  • Gu, M., and Imlay, J.A. (2011) The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 79: 11361150.
  • Ha, D.G., Merritt, J.H., Hampton, T.H., Hodgkinson, J.T., Janecek, M., Spring, D.R., et al. (2011) 2-Heptyl-4-quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa. J Bacteriol 193: 67706780.
  • Haas, D., and Defago, G. (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3: 307319.
  • Haas, D., and Keel, C. (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41: 117153.
  • Khan, S.R., Mavrodi, D.V., Jog, G.J., Suga, H., Thomashow, L.S., and Farrand, S.K. (2005) Activation of the phz operon of Pseudomonas fiuorescens 2-79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187: 65176527.
  • Khan, S.R., Herman, J., Krank, J., Serkova, N.J., Churchill, M.E., Suga, H., and Farrand, S.K. (2007) N-(3-hydroxyhexanoyl)-l-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30-84. Appl Environ Microbiol 73: 74437455.
  • Kim, S., and Aga, D.S. (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health B Crit Rev 10: 559573.
  • Koley, D., Ramsey, M.M., Bard, A.J., and Whiteley, M. (2011) Discovery of a biofilm electrocline using real-time 3D metabolite analysis. Proc Natl Acad Sci USA 108: 1999620001.
  • Kroiss, J., Kaltenpoth, M., Schneider, B., Schwinger, M.G., Hertweck, C., Maddula, R.K., et al. (2010) Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6: 261263.
  • Kuchma, S.L., Brothers, K.M., Merritt, J.H., Liberati, N.T., Ausubel, F.M., and O'Toole, G.A. (2007) BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189: 81658178.
  • Latifi, A., Winson, M.K., Foglino, M., Bycroft, B.W., Stewart, G.S., Lazdunski, A., and Williams, P. (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17: 333343.
  • Lau, G.W., Hassett, D.J., Ran, H.M., and Kong, F.S. (2004a) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10: 599606.
  • Lau, G.W., Ran, H.M., Kong, F.S., Hassett, D.J., and Mavrodi, D. (2004b) Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 72: 42754278.
  • Laursen, J.B., and Nielsen, J. (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104: 16631685.
  • Le, C.N., Kruijt, M., and Raaijmakers, J.M. (2012) Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. J Appl Microbiol 112: 390403.
  • Li, Q.A., Mavrodi, D.V., Thomashow, L.S., Roessle, M., and Blankenfeldt, W. (2011) Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE. J Biol Chem 286: 1821318221.
  • Little, A.E., Robinson, C.J., Peterson, S.B., Raffa, K.F., and Handelsman, J. (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62: 375401.
  • Liu, G.Y., and Nizet, V. (2009) Color me bad: microbial pigments as virulence factors. Trends Microbiol 17: 406413.
  • Lopez, D., Vlamakis, H., and Kolter, R. (2010) Biofilms. Cold Spring Harb Perspect Biol 2: a000398.
  • McDonald, M., Mavrodi, D.V., Thomashow, L.S., and Floss, H.G. (2001) Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J Am Chem Soc 123: 94599460.
  • Maddula, V.S., Zhang, Z., Pierson, E.A., and Pierson, L.S., 3rd (2006) Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Microb Ecol 52: 289301.
  • Maddula, V.S., Pierson, E.A., and Pierson, L.S., 3rd (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190: 27592766.
  • Martinez, J.L. (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321: 365367.
  • Mavrodi, D.V., Ksenzenko, V.N., Bonsall, R.F., Cook, R.J., Boronin, A.M., and Thomashow, L.S. (1998) A seven-gene locus for synthesis is of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180: 25412548.
  • Mavrodi, D.V., Blankenfeldt, W., and Thomashow, L.S. (2006) Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation. Annu Rev Phytopathol 44: 417445.
  • Mavrodi, D.V., Thomashow, L.S., and Blankenfeldt, W. (2008) Biosynthesis and regulation of phenazine compounds in Pseudomonas spp. In Pseudomonas Model Organism, Pathogen, Cell Factory. Rehm, B.H.A. (ed.). Weinheim, Germany: Wiley-VCH, pp. 331351.
  • Mavrodi, D.V., Peever, T.L., Mavrodi, O.V., Parejko, J.A., Raaijmakers, J.M., Lemanceau, P., et al. (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76: 866879.
  • Mavrodi, D.V., Mavrodi, O.V., Parejko, J.A., Bonsall, R.F., Kwak, Y.S., Paulitz, T.C., et al. (2012a) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78: 804812.
  • Mavrodi, O.V., Mavrodi, D.V., Parejko, J.A., Thomashow, L.S., and Weller, D.M. (2012b) Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 78: 32143220.
  • Mazurier, S., Corberand, T., Lemanceau, P., and Raaijmakers, J.M. (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3: 977991.
  • Mentel, M., Ahuja, E.G., Mavrodi, D.V., Breinbauer, R., Thomashow, L.S., and Blankenfeldt, W. (2009) Of two make one: the biosynthesis of phenazines. Chembiochem 10: 22952304.
  • Merritt, J.H., Brothers, K.M., Kuchma, S.L., and O'Toole, G.A. (2007) SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189: 81548164.
  • Migula, W. (1900) System Der Bakterien. Jena: G. Fischer.
  • Morales, D.K., Jacobs, N.J., Rajamani, S., Krishnamurthy, M., Cubillos-Ruiz, J.R., and Hogan, D.A. (2010) Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol 78: 13791392.
  • Parejko, J.A., Mavrodi, D.V., Mavrodi, O.V., Weller, D.M., and Thomashow, L.S. (2012) Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington state (USA). Microb Ecol 64: 226241.
  • Park, W., Pena-Llopis, S., Lee, Y., and Demple, B. (2006) Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. Biochem Biophys Res Commun 341: 5156.
  • Parsons, J.F., Calabrese, K., Eisenstein, E., and Ladner, J.E. (2003) Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry 42: 56845693.
  • Parsons, J.F., Calabrese, K., Eisenstein, E., and Ladner, J.E. (2004a) Structure of the phenazine biosynthesis enzyme PhzG. Acta Crystallogr D Biol Crystallogr 60: 21102113.
  • Parsons, J.F., Song, F., Parsons, L., Calabrese, K., Eisenstein, E., and Ladner, J.E. (2004b) Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Biochemistry 43: 1242712435.
  • Parsons, J.F., Greenhagen, B.T., Shi, K., Calabrese, K., Robinson, H., and Ladner, J.E. (2007) Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 46: 18211828.
  • Patriquin, G.M., Banin, E., Gilmour, C., Tuchman, R., Greenberg, E.P., and Poole, K. (2008) Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 190: 662671.
  • Perneel, M., D'hondt, L., De Maeyer, K., Adiobo, A., Rabaey, K., and Hofte, M. (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10: 778788.
  • Pierson, L.S., Gaffney, T., Lam, S., and Gong, F.C. (1995) Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett 134: 299307.
  • Pierson, L.S., 3rd, and Pierson, E.A. (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86: 16591670.
  • Pirnay, J.P., De Vos, D., Cochez, C., Bilocq, F., Vanderkelen, A., Zizi, M., et al. (2002) Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol 4: 898911.
  • Pirnay, J.P., Bilocq, F., Pot, B., Cornelis, P., Zizi, M., Van Eldere, J., et al. (2009) Pseudomonas aeruginosa population structure revisited. PLoS ONE 4: e7740.
  • Price-Whelan, A. (2009) Physiology and Mechanisms of Pyocyanin Reduction in Pseudomonas aeruginosa. Pasadena, CA, USA: California Institute of Technology.
  • Price-Whelan, A., Dietrich, L.E., and Newman, D.K. (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2: 7178.
  • Price-Whelan, A., Dietrich, L.E., and Newman, D.K. (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189: 63726381.
  • Ramos, I., Dietrich, L.E., Price-Whelan, A., and Newman, D.K. (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 161: 187191.
  • Saleh, O., Gust, B., Boll, B., Fiedler, H.P., and Heide, L. (2009) Aromatic prenylation in phenazine biosynthesis: dihydrophenazine-1-carboxylate dimethylallyltransferase from Streptomyces anulatus. J Biol Chem 284: 1443914447.
  • Saleh, O., Flinspach, K., Westrich, L., Kulik, A., Gust, B., Fiedler, H.P., and Heide, L. (2012) Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 8: 501513.
  • Sarmah, A.K., Meyer, M.T., and Boxall, A.B.A. (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65: 725759.
  • Schroeter, J. (1872) Ueber einige durch Bacterien gebildete Pigmente. In Beitrage zur Biologie der Pflanzen. Cohn, F. (ed.). Breslau: J.U. Kern's Verlag, pp. 109126.
  • Scott, J.J., Oh, D.C., Yuceer, M.C., Klepzig, K.D., Clardy, J., and Currie, C.R. (2008) Bacterial protection of beetle-fungus mutualism. Science 322: 6363.
  • Selezska, K., Kazmierczak, M., Musken, M., Garbe, J., Schobert, M., Haussler, S., et al. (2012) Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. Environ Microbiol 14: 19521967.
  • Smirnov, V., and Kiprianova, E. (1990) Bacteria of Pseudomonas Genus. Kiev: Naukova Dumka.
  • Su, J.J., Zhou, Q., Zhang, H.Y., Li, Y.Q., Huang, X.Q., and Xu, Y.Q. (2010) Medium optimization for phenazine-1-carboxylic acid production by a gacA qscR double mutant of Pseudomonas sp. M18 using response surface methodology. Bioresour Technol 101: 40894095.
  • Thiele-Bruhn, S. (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166: 145167.
  • Thomashow, L.S., Weller, D.M., Bonsall, R.F., and Pierson, L.S. (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56: 908912.
  • Turner, J.M., and Messenger, A.J. (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol 27: 211275.
  • Wang, Y., and Newman, D.K. (2008) Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol 42: 23802386.
  • Wang, Y., Kern, S.E., and Newman, D.K. (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192: 365369.
  • Wang, Y., Wilks, J.C., Danhorn, T., Ramos, I., Croal, L., and Newman, D.K. (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193: 36063617.
  • Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M., and Thomashow, L.S. (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40: 309348.
  • Wilson, R., Sykes, D.A., Watson, D., Rutman, A., Taylor, G.W., and Cole, P.J. (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56: 25152517.
  • Wood, D.W., and Pierson, L.S., 3rd (1996) The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168: 4953.
  • Wood, D.W., Gong, F., Daykin, M.M., Williams, P., and Pierson, L.S., 3rd (1997) N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179: 76637670.