We recently reported that the human pathogen Streptococcus pyogenes of the M1 serotype survives and replicates intracellularly after being phagocytosed by human neutrophils. These data raised the possibility that the generation of reactive oxygen metabolites by neutrophils, and the release of microbicidal molecules from their azurophilic and specific granules into phagosomes, can be modulated by S. pyogenes bacteria expressing surface-associated M and/or M-like proteins. We now demonstrate, using flow cytometry, immunofluorescence microscopy and transmission electron microscopy, that live wild-type S. pyogenes, after internalization by human neutrophils, inhibits the fusion of azurophilic granules with phagosomes. In contrast, azurophilic granule-content is efficiently delivered to phagosomes containing bacteria not expressing M and/or M-like proteins. Also, when heat-killed wild-type bacteria are used as the phagocytic prey, fusion of azurophilic granules with phagosomes is observed. The inhibition caused by live wild-type S. pyogenes is specific for azurophilic granule–phagosome fusion, because the mobilization of specific granules and the production of reactive oxygen species are induced to a similar extent by all strains tested. In conclusion, our results demonstrate that viable S. pyogenes bacteria expressing M and M-like proteins selectively prevent the fusion of azurophilic granules with phagosomes.