SEARCH

SEARCH BY CITATION

Summary

Shigella bacteria invade macrophages and epithelial cells and following internalization lyse the phagosome and escape to the cytoplasm. Galectin-3, an abundant protein in macrophages and epithelial cells, belongs to a family of beta-galactoside-binding proteins, the galectins, with many proposed functions in immune response, development, differentiation, cancer and infection. Galectins are synthesized as cytosolic proteins and following non-classical secretion bind extracellular beta-galactosides. Here we analysed the localization of galectin-3 following entry of Shigella into the cytosol and detected a striking phenomenon. Very shortly after bacterial invasion, intracellular galectin-3 accumulated in structures in vicinity to internalized bacteria. By using immuno-electron microscopy analysis we identified galectin-3 in membranes localized in the phagosome and in tubules and vesicles that derive from the endocytic pathway. We also demonstrated that the binding of galectin-3 to host N-acetyllactosamine-containing glycans, was required for forming the structures. Accumulation of the structures was a type three secretion system-dependent process. More specifically, existence of structures was strictly dependent upon lysis of the phagocytic vacuole and could be shown also by Gram-positive Listeria and Salmonella sifA mutant. We suggest that galectin-3-containing structures may serve as a potential novel tool to spot vacuole lysis.