SEARCH

SEARCH BY CITATION

References

  • Agarwal, N., Raghunand, T.R., and Bishai, W.R. (2006) Regulation of the expression of whiB1 in Mycobacterium tuberculosis: role of cAMP receptor protein. Microbiology 152: 27492756.
  • Agarwal, N., Lamichhane, G., Gupta, R., Nolan, S., and Bishai, W.R. (2009) Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460: 98102.
  • Aiba, H., Nakamura, T., Mitani, H., and Mori, H. (1985) Mutations that alter the allosteric nature of cAMP receptor protein of Escherichia coli. EMBO J 4: 33293332.
  • Akhter, Y., Yellaboina, S., Farhana, A., Ranjan, A., Ahmed, N., and Hasnain, S.E. (2008) Genome scale portrait of cAMP-receptor protein (CRP) regulons in mycobacteria points to their role in pathogenesis. Gene 407: 148158.
  • Bai, G., McCue, L.A., and McDonough, K.A. (2005) Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein. J Bacteriol 187: 77957804.
  • Bai, G., Gazdik, M.A., Schaak, D.D., and McDonough, K.A. (2007) The Mycobacterium bovis BCG cyclic AMP receptor-like Protein is a functional DNA binding protein in vitro and in vivo, but its activity differs from that of its M. tuberculosis ortholog, Rv3676. Infect Immun 75: 55095517.
  • Bai, G., Schaak, D.D., and McDonough, K.A. (2009) cAMP levels within Mycobacterium tuberculosis and Mycobacterium bovis BCG increase upon infection of macrophages. FEMS Immunol Med Microbiol 55: 6873.
  • Barba, J., Alvarez, A.H., and Flores-Valdez, M.A. (2010) Modulation of cAMP metabolism in Mycobacterium tuberculosis and its effect on host infection. Tuberculosis 90: 208212.
  • Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., and Duncan, K. (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43: 717731.
  • Botsford, J.L. (1981) Cyclic nucleotides in procaryotes. Microbiol Rev 45: 620642.
  • Buettner, M.J., Spitz, E., and Rickenberg, H.V. (1973) Cyclic adenosine 3′,5′-monophosphate in Escherichia coli. J Bacteriol 114: 10681073.
  • Cha, P.H., Park, S.Y., Moon, M.W., Subhadra, B., Oh, T.K., Kim, E., et al. (2010) Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032. Appl Microbiol Biotechnol 85: 10611068.
  • Dass, B.K., Sharma, R., Shenoy, A.R., Mattoo, R., and Visweswariah, S.S. (2008) Cyclic AMP in mycobacteria: characterization and functional role of the Rv1647 ortholog in Mycobacterium smegmatis. J Bacteriol 190: 38243834.
  • Epstein, W., Rothman-Denes, L.B., and Hesse, J. (1975) Adenosine 3′:5′-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 72: 23002304.
  • Gallagher, D.T., Smith, N., Kim, S.K., Robinson, H., and Reddy, P.T. (2009) Profound asymmetry in the structure of the cAMP-free cAMP Receptor Protein (CRP) from Mycobacterium tuberculosis. J Biol Chem 284: 82288232.
  • Gazdik, M.A., and McDonough, K.A. (2005) Identification of cyclic AMP-regulated genes in Mycobacterium tuberculosis complex bacteria under low-oxygen conditions. J Bacteriol 187: 26812692.
  • Gazdik, M.A., Bai, G., Wu, Y., and McDonough, K.A. (2009) Rv1675c (cmr) regulates intramacrophage and cyclic AMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Mol Microbiol 71: 434448.
  • Guo, Y.L., Seebacher, T., Kurz, U., Linder, J.U., and Schultz, J.E. (2001) Adenylyl cyclase Rv1625c of Mycobacterium tuberculosis: a progenitor of mammalian adenylyl cyclases. EMBO J 20: 36673675.
  • Hulko, M., Berndt, F., Gruber, M., Linder, J.U., Truffault, V., Schultz, A., et al. (2006) The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126: 929940.
  • Hunt, D.M., Saldanha, J.W., Brennan, J.F., Benjamin, P., Strom, M., Cole, J.A., et al. (2008) Single nucleotide polymorphisms that cause structural changes in the cyclic AMP receptor protein transcriptional regulator of the tuberculosis vaccine strain Mycobacterium bovis BCG alter global gene expression without attenuating growth. Infect Immun 76: 22272234.
  • Imamura, R., Yamanaka, K., Ogura, T., Hiraga, S., Fujita, N., Ishihama, A., and Niki, H. (1996) Identification of the cpdA gene encoding cyclic 3′,5′-adenosine monophosphate phosphodiesterase in Escherichia coli. J Biol Chem 271: 2542325429.
  • Kalamidas, S.A., Kuehnel, M.P., Peyron, P., Rybin, V., Rauch, S., Kotoulas, O.B., et al. (2006) cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: consequences for mycobacteria. J Cell Sci 119: 36863694.
  • Keppetipola, N., and Shuman, S. (2008) A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2′,3′-cyclic nucleotide phosphodiesterase activity. J Biol Chem 283: 3094230949.
  • Klengel, T., Liang, W.J., Chaloupka, J., Ruoff, C., Schroppel, K., Naglik, J.R., et al. (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15: 20212026.
  • Kolb, A., Busby, S., Buc, H., Garges, S., and Adhya, S. (1993) Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62: 749795.
  • Krawczyk, J., Kohl, T.A., Goesmann, A., Kalinowski, J., and Baumbach, J. (2009) From Corynebacterium glutamicum to Mycobacterium tuberculosis – towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet. Nucleic Acids Res 37: e97.
  • Kumar, P., Joshi, D.C., Akif, M., Akhter, Y., Hasnain, S.E., and Mande, S.C. (2010) Mapping conformational transitions in cyclic AMP receptor protein: crystal structure and normal-mode analysis of Mycobacterium tuberculosis apo-cAMP receptor protein. Biophys J 98: 305314.
  • Lee, C.H. (1979) Metabolism of cyclic AMP in non-pathogenic Mycobacterium smegmatis. Arch Microbiol 120: 3537.
  • Linder, J.U., Schultz, A., and Schultz, J.E. (2002) Adenylyl cyclase Rv1264 from Mycobacterium tuberculosis has an autoinhibitory N-terminal domain. J Biol Chem 277: 1527115276.
  • Linder, J.U., Hammer, A., and Schultz, J.E. (2004) The effect of HAMP domains on class IIIb adenylyl cyclases from Mycobacterium tuberculosis. Eur J Biochem 271: 24462451.
  • Lowrie, D.B., Jackett, P.S., and Ratcliffe, N.A. (1975) Mycobacterium microti may protect itself from intracellular destruction by releasing cyclic AMP into phagosomes. Nature 254: 600602.
  • Lowrie, D.B., Aber, V.R., and Jackett, P.S. (1979) Phagosome–lysosome fusion and cyclic adenosine 3′:5′-monophosphate in macrophages infected with Mycobacterium microti, Mycobacterium bovis BCG or Mycobacterium lepraemurium. J Gen Microbiol 110: 431441.
  • McCue, L.A., McDonough, K.A., and Lawrence, C.E. (2000) Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 10: 204219.
  • Mallet, L., Renault, G., and Jacquet, M. (2000) Functional cloning of the adenylate cyclase gene of Candida albicans in Saccharomyces cerevisiae within a genomic fragment containing five other genes, including homologues of CHS6 and SAP185. Yeast 16: 959966.
  • Mukamolova, G.V., Turapov, O.A., Young, D.I., Kaprelyants, A.S., Kell, D.B., and Young, M. (2002) A family of autocrine growth factors in Mycobacterium tuberculosis. Mol Microbiol 46: 623635.
  • Nambi, S., Basu, N., and Visweswariah, S.S. (2010) cAMP-regulated protein lysine acetylases in mycobacteria. J Biol Chem 285: 2431324323.
  • Padh, H., and Venkitasubramanian, T.A. (1976a) Adenosine 3′,5′-monophosphate in Mycobacterium phlei and Mycobacterium tuberculosis H37Ra. Microbios 16: 183189.
  • Padh, H., and Venkitasubramanian, T.A. (1976b) Cyclic adenosine 3′, 5′-monophosphate in mycobacteria. Indian J Biochem Biophys 13: 413414.
  • Podobnik, M., Tyagi, R., Matange, N., Dermol, U., Gupta, A.K., Mattoo, R., et al. (2009) A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability. J Biol Chem 284: 3284632857.
  • Reddy, M.C., Palaninathan, S.K., Bruning, J.B., Thurman, C., Smith, D., and Sacchettini, J.C. (2009) Structural insights into the mechanism of the allosteric transitions of Mycobacterium tuberculosis cAMP receptor protein. J Biol Chem 284: 3658136591.
  • Reddy, S.K., Kamireddi, M., Dhanireddy, K., Young, L., Davis, A., and Reddy, P.T. (2001) Eukaryotic-like adenylyl cyclases in Mycobacterium tuberculosis H37Rv: cloning and characterization. J Biol Chem 276: 3514135149.
  • Rickman, L., Scott, C., Hunt, D.M., Hutchinson, T., Menendez, M.C., Whalan, R., et al. (2005) A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol Microbiol 56: 12741286.
  • Roach, S.K., Lee, S.B., and Schorey, J.S. (2005) Differential activation of the transcription factor cyclic AMP response element binding protein (CREB) in macrophages following infection with pathogenic and nonpathogenic mycobacteria and role for CREB in tumor necrosis factor alpha production. Infect Immun 73: 514522.
  • Shenoy, A.R., and Visweswariah, S.S. (2006) New messages from old messengers: cAMP and mycobacteria. Trends Microbiol 14: 543550.
  • Shenoy, A.R., Sivakumar, K., Krupa, A., Srinivasan, N., and Visweswariah, S.S. (2004) A survey of nucleotide cyclases in actinobacteria: unique domain organization and expansion of the class III cyclase family in Mycobacterium tuberculosis. Comp Funct Genomics 5: 1738.
  • Shenoy, A.R., Srinivas, A., Mahalingam, M., and Visweswariah, S.S. (2005a) An adenylyl cyclase pseudogene in Mycobacterium tuberculosis has a functional ortholog in Mycobacterium avium. Biochimie 87: 557563.
  • Shenoy, A.R., Sreenath, N., Podobnik, M., Kovacevic, M., and Visweswariah, S.S. (2005b) The Rv0805 gene from Mycobacterium tuberculosis encodes a 3′,5′-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis. Biochemistry 44: 1569515704.
  • Shenoy, A.R., Capuder, M., Draskovic, P., Lamba, D., Visweswariah, S.S., and Podobnik, M. (2007) Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. J Mol Biol 365: 211225.
  • Sherman, D.R., Voskuil, M., Schnappinger, D., Liao, R., Harrell, M.I., and Schoolnik, G.K. (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci USA 98: 75347539.
  • Spreadbury, C.L., Pallen, M.J., Overton, T., Behr, M.A., Mostowy, S., Spiro, S., et al. (2005) Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation. Microbiology 151: 547556.
  • Stapleton, M., Haq, I., Hunt, D.M., Arnvig, K.B., Artymiuk, P.J., Buxton, R.S., and Green, J. (2010) Mycobacterium tuberculosis cAMP receptor protein (Rv3676) differs from the Escherichia coli paradigm in its cAMP binding and DNA binding properties and transcription activation properties. J Biol Chem 285: 70167027.
  • Tang, W.J., Yan, S., and Drum, C.L. (1998) Class III adenylyl cyclases: regulation and underlying mechanisms. Adv Second Messenger Phosphoprotein Res 32: 137151.
  • Tews, I., Findeisen, F., Sinning, I., Schultz, A., Schultz, J.E., and Linder, J.U. (2005) The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308: 10201023.
  • Yadav, M., Roach, S.K., and Schorey, J.S. (2004) Increased mitogen-activated protein kinase activity and TNF-alpha production associated with Mycobacterium smegmatis- but not Mycobacterium avium-infected macrophages requires prolonged stimulation of the calmodulin/calmodulin kinase and cyclic AMP/protein kinase A pathways. J Immunol 172: 55885597.