SEARCH

SEARCH BY CITATION

References

  • Bahr, V., Stierhof, Y.D., Ilg, T., Demar, M., Quinten, M., and Overath, P. (1993) Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol 58: 107121.
  • Bardan, A., Nizet, V., and Gallo, R.L. (2004) Antimicrobial peptides and the skin. Expert Opin Biol Ther 4: 543549.
  • Bouvier, J., Schneider, P., and Etges, R. (1995) Leishmanolysin: surface metalloproteinase of Leishmania. Methods Enzymol 248: 614633.
  • Bowdish, D.M., Davidson, D.J., Scott, M.G., and Hancock, R.E. (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49: 17271732.
  • Braff, M.H., Hawkins, M.A., Di Nardo, A., Lopez-Garcia, B., Howell, M.D., Wong, C., et al. (2005a) Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174: 42714278.
  • Braff, M.H., Zaiou, M., Fierer, J., Nizet, V., and Gallo, R.L. (2005b) Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun 73: 67716781.
  • Brittingham, A., Morrison, C.J., McMaster, W.R., McGwire, B.S., Chang, K.P., and Mosser, D.M. (1995) Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J Immunol 155: 31023111.
  • Brown, K.L., and Hancock, R.E. (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18: 2430.
  • Bulet, P., Stocklin, R., and Menin, L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198: 169184.
  • Del Cacho, E., Quilez, J., Lopez-Bernad, F., Sanchez-Acedo, C., and Gallego, M. (1996) Identification of a fibronectin-like molecule on the surface of Leishmania amastigotes. Vet Parasitol 66: 1318.
  • Desjeux, P. (2001) The incidence in risk factors for leishmaniasis worldwide. Trans Royal Soc Trop Med Hyg 95: 239243.
  • Gallo, R.L., Kim, K.J., Bernfield, M., Kozak, C.A., Zanetti, M., Merluzzi, L., and Gennaro, R. (1997) Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272: 1308813093.
  • Goncalves, R., Vieira, E.R., Melo, M.N., Gollob, K.J., Mosser, D.M., and Tafuri, W.L. (2005) A sensitive flow cytometric methodology for studying the binding of L. chagasi to canine peritoneal macrophages. BMC Infect Dis 5: 39.
  • Hsiao, C.H., Yao, C., Storlie, P., Donelson, J.E., and Wilson, M.E. (2008) The major surface protease (MSP or GP63) in the intracellular amastigote stage of Leishmania chagasi. Mol Biochem Parasitol 157: 148159.
  • Ilg, T., Harbecke, D., and Overath, P. (1993) The lysosomal gp63-related protein in Leishmania mexicana amastigotes is a soluble metalloproteinase with an acidic pH optimum. FEBS Lett 327: 103107.
  • Joshi, P.B., Sacks, D.L., Modi, G., and McMaster, W.R. (1998) Targeted gene deletion of Leishmania major genes encoding developmental stage-specific leishmanolysin (GP63). Mol Microbiol 27: 519530.
  • Joshi, P.B., Kelly, B.L., Kamhawi, S., Sacks, D.L., and McMaster, W.R. (2002) Targeted gene deletion inLeishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 120: 3340.
  • Kane, M.M., and Mosser, D.M. (2001) The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 166: 11411147.
  • Kiderlen, A.F., and Kaye, P.M. (1990) A modified colorimetric assay of macrophage activation for intracellular cytotoxicity against Leishmania parasites. J Immunol Methods 127: 1118.
  • Koczulla, R., von Degenfeld, G., Kupatt, C., Krotz, F., Zahler, S., Gloe, T., et al. (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111: 16651672.
  • Koziel, J., Karim, A.Y., Przybyszewska, K., Ksiazek, M., Rapala-Kozik, M., Nguyen, K.A., and Potempa, J. (2010) Proteolytic inactivation of LL-37 by karilysin, a novel virulence mechanism of Tannerella forsythia. J Innate Immun 2: 288293.
  • Kulkarni, M.M., McMaster, W.R., Kamysz, E., Kamysz, W., Engman, D.M., and McGwire, B.S. (2006) The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Mol Microbiol 62: 14841497.
  • Kulkarni, M.M., Jones, E.A., McMaster, W.R., and McGwire, B.S. (2008) Fibronectin binding and proteolytic degradation by Leishmania and effects on macrophage activation. Infect Immun 76: 17381747.
  • Kulkarni, M.M., McMaster, W.R., Kamysz, W., and McGwire, B.S. (2009) Antimicrobial Peptide-induced Apoptotic Death of Leishmania Results from Calcium-dependent, Caspase-independent Mitochondrial Toxicity. J Biol Chem 284: 1549615504.
  • Lee, P.H., Ohtake, T., Zaiou, M., Murakami, M., Rudisill, J.A., Lin, K.H., and Gallo, R.L. (2005) Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proc Natl Acad Sci USA 102: 37503755.
  • Lehrer, R.I., Barton, A., Daher, K.A., Harwig, S.S., Ganz, T., and Selsted, M.E. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84: 553561.
  • Lieke, T., Nylen, S., Eidsmo, L., McMaster, W.R., Mohammadi, A.M., Khamesipour, A., et al. (2008) Leishmania surface protein gp63 binds directly to human natural killer cells and inhibits proliferation. Clin Exp Immunol 153: 221230.
  • McGwire, B., and Chang, K.P. (1994) Genetic rescue of surface metalloproteinase (gp63)-deficiency in Leishmania amazonensis variants increases their infection of macrophages at the early phase. Mol Biochem Parasitol 66: 345347.
  • McGwire, B.S., and Chang, K.P. (1996) Posttranslational regulation of a Leishmania HEXXH metalloprotease (gp63). The effects of site-specific mutagenesis of catalytic, zinc binding, N-glycosylation, and glycosyl phosphatidylinositol addition sites on N-terminal end cleavage, intracellular stability, and extracellular exit. J Biol Chem 271: 79037909.
  • McGwire, B.S., and Kulkarni, M.M. (2010) Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism. Exp Parasitol 126: 397405.
  • McGwire, B.S., Olson, C.L., Tack, B.F., and Engman, D.M. (2003) Killing of African trypanosomes by antimicrobial peptides. J Infect Dis 188: 146152.
  • McMahon-Pratt, D., and Alexander, J. (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 201: 206224.
  • Mookherjee, N., Brown, K.L., Bowdish, D.M., Doria, S., Falsafi, R., Hokamp, K., et al. (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176: 24552464.
  • Murakami, M., Lopez-Garcia, B., Braff, M., Dorschner, R.A., and Gallo, R.L. (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172: 30703077.
  • Nijnik, A., Pistolic, J., Wyatt, A., Tam, S., and Hancock, R.E. (2009) Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. J Immunol 183: 57885798.
  • Nizet, V., and Gallo, R.L. (2003) Cathelicidins and innate defense against invasive bacterial infection. Scand J Infect Dis 35: 670676.
  • Nizet, V., Ohtake, T., Lauth, X., Trowbridge, J., Rudisill, J., Dorschner, R.A., et al. (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414: 454457.
  • Padigel, U.M., Alexander, J., and Farrell, J.P. (2003) The role of interleukin-10 in susceptibility of BALB/c mice to infection with Leishmania mexicana and Leishmania amazonensis. J Immunol 171: 37053710.
  • Pestonjamasp, V.K., Huttner, K.H., and Gallo, R.L. (2001) Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides 22: 16431650.
  • Pinheiro da Silva, F., Gallo, R.L., and Nizet, V. (2009) Differing effects of exogenous or endogenous cathelicidin on macrophage toll-like receptor signaling. Immunol Cell Biol 87: 496500.
  • Powers, J.P., and Hancock, R.E. (2003) The relationship between peptide structure and antibacterial activity. Peptides 24: 16811691.
  • Reiner, S.L., and Locksley, R.M. (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13: 151177.
  • Reiner, S.L., Wang, Z.E., Hatam, F., Scott, P., and Locksley, R.M. (1993) TH1 and TH2 cell antigen receptors in experimental leishmaniasis. Science 259: 14571460.
  • Rosas, L.E., Keiser, T., Barbi, J., Satoskar, A.A., Septer, A., Kaczmarek, J., et al. (2005) Genetic background influences immune responses and disease outcome of cutaneous L. mexicana infection in mice. Int Immunol 17: 13471357.
  • Rosenberger, C.M., Gallo, R.L., and Finlay, B.B. (2004) Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA 101: 24222427.
  • Sieprawska-Lupa, M., Mydel, P., Krawczyk, K., Wojcik, K., Puklo, M., Lupa, B., et al. (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48: 46734679.
  • Streit, J.A., Donelson, J.E., Agey, M.W., and Wilson, M.E. (1996) Developmental changes in the expression of Leishmania chagasi gp63 and heat shock protein in a human macrophage cell line. Infect Immun 64: 18101818.
  • Yamasaki, K., Di Nardo, A., Bardan, A., Murakami, M., Ohtake, T., Coda, A., et al. (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13: 975980.
  • Yang, Z., Mosser, D.M., and Zhang, X. (2007) Activation of the MAPK, ERK, following Leishmania amazonensis infection of macrophages. J Immunol 178: 10771085.
  • Yu, J., Mookherjee, N., Wee, K., Bowdish, D.M., Pistolic, J., Li, Y., et al. (2007) Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways. J Immunol 179: 76847691.