SEARCH

SEARCH BY CITATION

Keywords:

  • Mismatch repair deficiency;
  • MLH1 methylation;
  • BRAF;
  • genetic counselling;
  • colorectal neoplasms;
  • hereditary nonpolyposis

Abstract

Objective  Deficiency of DNA mismatch repair (MMR) causes microsatellite instability (MSI) in a subset of colorectal cancers. Patients with these tumours have a better prognosis and may have an altered response to chemotherapy. Some of the tumours are caused by hereditary mutations (hereditary nonpolyposis colon cancer or Lynch syndrome), but most are epigenetic changes of sporadic origin. The aim of this study was to define a robust and inexpensive strategy for such classification in clinical practice.

Method  Tumours and blood samples from 262 successive patients with colorectal adenocarcinomas were collected. Expression of the MMR proteins MLH1, MSH2, and MSH6 by immunohistochemistry (IHC) was compared with MSI DNA analysis. Methylation analysis of MLH1 and mutation analysis for BRAF V600E were compared in samples with MSI and/or lack of MLH1 expression to determine if the tumour was likely to be sporadic.

Results  Thirty-nine (14.9%) of the tumours showed MMR deficiency by IHC or by microsatellite analysis. Sporadic inactivation by methylation of MLH1 promoter was found in 35 patients whereby the BRAF activating V600E mutation, indicating sporadic origin, was found in 32 tumours. On the basis of molecular characteristics we found 223 patients with intact MMR, 35 patients with sporadic MMR deficiency, and four patients who were likely to have hereditary MMR deficiency.

Conclusion  To obtain the maximal benefit for patients and clinicians, MMR testing should be supplemented with MLH1 methylation or BRAF mutation analysis to distinguish sporadic patients from likely hereditary ones. MMR deficient patients with sporadic disease can be reassured of the better prognosis and the likely hereditary cases should receive genetic counselling.