SEARCH

SEARCH BY CITATION

Keywords:

  • alogliptin;
  • α cell;
  • β cell;
  • β-cell mass;
  • GIP;
  • GLP-1;
  • incretins;
  • linagliptin;
  • saxagliptin;
  • sitagliptin;
  • type 2 diabetes;
  • vildagliptin

Type 2 diabetes mellitus (T2DM) develops as a consequence of progressive β-cell dysfunction in the presence of insulin resistance. None of the currently-available T2DM therapies is able to change the course of the disease by halting the relentless decline in pancreatic islet cell function. Recently, dipeptidyl peptidase (DPP)-4 inhibitors, or incretin enhancers, have been introduced in the treatment of T2DM. This class of glucose-lowering agents enhances endogenous glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) levels by blocking the incretin-degrading enzyme DPP-4. DPP-4 inhibitors may restore the deranged islet-cell balance in T2DM, by stimulating meal-related insulin secretion and by decreasing postprandial glucagon levels. Moreover, in rodent studies, DPP-4 inhibitors demonstrated beneficial effects on (functional) β-cell mass and pancreatic insulin content. Studies in humans with T2DM have indicated improvement of islet-cell function, both in the fasted state and under postprandial conditions and these beneficial effects were sustained in studies with a duration up to 2 years. However, there is at present no evidence in humans to suggest that DPP-4 inhibitors have durable effects on β-cell function after cessation of therapy. Long-term, large-sized trials using an active blood glucose lowering comparator followed by a sufficiently long washout period after discontinuation of the study drug are needed to assess whether DPP-4 inhibitors may durably preserve pancreatic islet-cell function in patients with T2DM.