SEARCH

SEARCH BY CITATION

Abstract The formation and cytodifferentiation of egg envelopes were studied at the ultrastructural level in blastozooids of Botryllus schlosseri. The process was divided into five recognized stages of oogenesis. First, the small young oocytes (stage 1) are contacted by scattered cells (primary follicle cells—PFC) which adhere to the oolemma at several junctional spots. PFC extend all around the growing oocyte, acquire polarity, and form a layer covered externally by a thin basal membrane (stage 2). At stage 3 isolated cells are recognizable between the PFC layer and oocyte. They never form junctions with the oocyte and represent prospective inner follicle cells (IFC) and test cells (TC), the latter being progressively received in superficial depressions in the oocyte. The layer of PFC, which maintains junctions with the oolemma, represents prospective outer follicle cells (OFC). PFC are considered to be the source of the three cellular envelopes because a contribution from mesenchymatous elements was not observed. At the beginning of vitellogenesis (stage 4), the vitelline coat (VC) becomes recognizable as a loose net covering the oocyte and TC. It is crossed by the oocyte microvilli and OFC projections which meet and form numerous small junctional plaques, some of them resembling gap junctions. IFC, VC and TC show marked signs of differentiation with approaching ovulation. OFC differentiate completely before ovulation (stage 5) and are engaged in intense synthesis of proteins which may be transferred and taken by endocytosis into the oocyte for yolk formation. Experiments with injected horseradish peroxidase also revealed that proteins present in the blood may reach the oocyte via the intercellular pathway, overcoming OFC and IFC. The possible roles of all the egg envelopes are discussed.