• 1
    Eastham JA, May R, Robertson JL, Sartor O, Kattan MW. Development of a nomogram that predicts the probability of a positive prostate biopsy in men with an abnormal digital rectal examination and a prostate-specific antigen between 0 and 4 ng/mL. Urology 1999; 54: 70913
  • 2
    Finne P, Auvinen A, Aro J et al. Estimation of prostate cancer risk on the basis of total and free prostate-specific antigen, prostate volume and digital rectal examination. Eur Urol 2002; 41: 61927
  • 3
    Karakiewicz PI, Benayoun S, Kattan MW et al. Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen. J Urol 2005; 173: 19304
  • 4
    Chun FK, Graefen M, Briganti A et al. Initial biopsy outcome prediction-head-to-head comparison of a logistic regression-based nomogram versus artificial neural network. Eur Urol 2006; Aug 4 Epub ahead of print
  • 5
    Djavan B, Remzi M, Zlotta A, Seitz C, Snow P, Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002; 20: 9219
  • 6
    Stephan C, Cammann H, Semjonow A et al. Multicenter evaluation of an artificial neural network to increase the prostate cancer detection rate and reduce unnecessary biopsies. Clin Chem 2002; 48: 127987
  • 7
    Remzi M, Anagnostou T, Ravery V et al. An artificial neural network to predict the outcome of repeat prostate biopsies. Urology 2003; 62: 45660
  • 8
    Poulakis V, Witzsch U, De Vries R et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate-specific antigen, and Gleason score to predict prostate cancer recurrence after radical prostatectomy. Eur Urol 2004; 46: 5718
  • 9
    Porter CR, Gamito EJ, Crawford ED et al. Model to predict prostate biopsy outcome in large screening population with independent validation in referral setting. Urology 2005; 65: 93741
  • 10
    D’Amico AV, Renshaw AA, Arsenault L, Schultz D, Richie JP. Clinical predictors of upgrading to Gleason grade 4 or 5 disease at radical prostatectomy: potential implications for patient selection for radiation and androgen suppression therapy. Int J Radiat Oncol Biol Phys 1999; 45: 8416
  • 11
    Chun FK, Steuber T, Erbersdobler A et al. Development and internal validation of a nomogram predicting the probability of prostate cancer Gleason sum upgrading between biopsy and radical prostatectomy pathology. Eur Urol 2006; 49: 8206
  • 12
    Graefen M, Haese A, Pichlmeier U et al. A validated strategy for side specific prediction of organ confined prostate cancer: a tool to select for nerve sparing radical prostatectomy. J Urol 2001; 165: 85763
  • 13
    Ohori M, Kattan MW, Koh H et al. Predicting the presence and side of extracapsular extension: a nomogram for staging prostate cancer. J Urol 2004; 171: 18449
  • 14
    Steuber T, Graefen M, Haese A et al. Validation of a nomogram for prediction of side specific extracapsular extension at radical prostatectomy. J Urol 2006; 175: 93944
  • 15
    Svatek R, Karakiewicz PI, Shulman M, Karam J, Perrotte P, Benaim E. Pre-treatment nomogram for disease-specific survival of patients with chemotherapy-naive androgen independent prostate cancer. Eur Urol 2006; 49: 66674
  • 16
    Partin AW, Kattan MW, Subong EN et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 1997; 277: 144551
  • 17
    Graefen M, Noldus J, Pichlmeier U et al. Early prostate-specific antigen relapse after radical retropubic prostatectomy: prediction on the basis of preoperative and postoperative tumor characteristics. Eur Urol 1999; 36: 2130
  • 18
    Conrad S, Graefen M, Pichlmeier U et al. Prospective validation of an algorithm with systematic sextant biopsy to predict pelvic lymph node metastasis in patients with clinically localized prostatic carcinoma. J Urol 2002; 167: 5215
  • 19
    Specht MC, Kattan MW, Gonen M, Fey J, Van Zee KJ. Predicting nonsentinel node status after positive sentinel lymph biopsy for breast cancer: clinicians versus nomogram. Ann Surg Oncol 2005; 12: 6549
  • 20
    D’Amico AV, Whittington R, Malkowicz SB et al. Predicting prostate specific antigen outcome preoperatively in the prostate specific antigen era. J Urol 2001; 166: 21858
  • 21
    Shipley WU, Thames HD, Sandler HM et al. Radiation therapy for clinically localized prostate cancer: a multi-institutional pooled analysis. JAMA 1999; 281: 1598604
  • 22
    Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 1998; 90: 76671
  • 23
    Kattan MW. When and how to use informatics tools in caring for urologic patients. Nat Clin Pract Urol 2005; 2: 18390
  • 24
    Katz EM, Kattan MW. How to judge a tumor marker. Nat Clin Pract Oncol 2005; 2: 4823
  • 25
    Kattan MW. Evaluating a new marker’s predictive contribution. Clin Cancer Res 2004; 10: 8224
  • 26
    Kattan MW. Judging new markers by their ability to improve predictive accuracy. J Natl Cancer Inst 2003; 95: 6345
  • 27
    Kattan MW. Comparison of Cox regression with other methods for determining prediction models and nomograms. J Urol 2003; 170 (Suppl.): S610
  • 28
    Mandrekar SJ, Grothey A, Goetz MP, Sargent DJ. Clinical trial designs for prospective validation of biomarkers. Am J Pharmacogenomics 2005; 5: 31725
  • 29
    Schwarzer G, Schumacher M. Artificial neural networks for diagnosis and prognosis in prostate cancer. Semin Urol Oncol 2002; 20: 8995
  • 30
    Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 54161
  • 31
    Bradley E, Tibshirani RJ. Monographs on Statistics and Applied Probability: An Introduction to the Bootstrap. London: Chapman and Hall/CRC, 1993:275
  • 32
    Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 2001; 54: 77481
  • 33
    Graefen M, Karakiewicz PI, Cagiannos I et al. International validation of a preoperative nomogram for prostate cancer recurrence after radical prostatectomy. J Clin Oncol 2002; 20: 320612
  • 34
    Graefen M, Karakiewicz PI, Cagiannos I et al. Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer. J Clin Oncol 2002; 20: 9516
  • 35
    Bostwick DG. Gleason grading of prostatic needle biopsies. Correlation with in 316 matched prostatectomies. Am J Surg Pathol 1994; 18: 796803
  • 36
    King CR, Long JP. Prostate biopsy grading errors: a sampling problem? Int J Cancer 2000; 90: 32630
  • 37
    Garnett JE, Oyasu R, Grayhack JT. The accuracy of diagnostic biopsy specimens in predicting tumor grades by Gleason’s classification of radical prostatectomy specimens. J Urol 1984; 131: 6903
  • 38
    Gregori A, Vieweg J, Dahm P, Paulson DF. Comparison of ultrasound-guided biopsies and prostatectomy specimens: predictive accuracy of Gleason score and tumor site. Urol Int 2001; 66: 6671
  • 39
    D’Amico AV, Whittington R, Malkowicz SB et al. A multivariate analysis of clinical and pathological factors which predict for prostate-specific antigen failure after radical prostatectomy for prostate cancer. J Urol 1995; 154: 1318
  • 40
    Stamey TA, McNeal JE, Yemoto CM et al. Gleason sums of 7 lose valuable prognostic information in comparison to estimates of % grade 4 and 5 cancer. J Urol 1997; 157: 204, Abstract
  • 41
    Humphrey PA, Frazier HA, Vollmer RT, Paulson DF. Stratification of pathologic features in radical prostatectomy specimens that are predictive of elevated initial postoperative serum prostate-specific antigen levels. Cancer 1993; 71: 18217
  • 42
    Zincke H, Bergstralh EJ, Blute ML et al. Radical prostatectomy for clinically localized prostate cancer: long-term results of 1,143 patients from a single institution. J Clin Oncol 1994; 12: 225463
  • 43
    Ackerman DA, Barry JM, Wicklund RA, Olson N, Lowe BA. Analysis of risk factors associated with prostate cancer extension to the surgical margin and pelvic node metastasis at radical prostatectomy. J Urol 1993; 150: 184550
  • 44
    Michl UH, Friedrich MG, Graefen M, Haese A, Heinzer H, Huland H. Prediction of postoperative sexual function after nerve sparing radical retropubic prostatectomy. J Urol 2006; 176: 22731
  • 45
    Burkhard FC, Kessler TM, Fleischmann A, Thalmann GN, Schumacher M, Studer UE. Nerve sparing open radical retropubic prostatectomy – does it have an impact on urinary continence? J Urol 2006; 176: 18995
  • 46
    Badalament RA, Miller MC, Peller PA et al. An algorithm for predicting non-organ confined prostate cancer using the results obtained from sextant core biopsies and prostate specific antigen level. J Urol 1996; 156: 137580
  • 47
    Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer 2001; 91 (Suppl.): 161535
  • 48
    Uzzo RG, Wei JT, Waldbaum RS, Perlmutter AP, Byrne JC, Vaughan ED Jr. The influence of prostate size on cancer detection. Urology 1995; 46: 8316
  • 49
    Karakiewicz PI, Bazinet M, Aprikian AG et al. Outcome of sextant biopsy according to gland volume. Urology 1997; 49: 559
  • 50
    Freedland SJ, Isaacs WB, Platz EA et al. Prostate size and risk of high-grade, advanced prostate cancer and biochemical progression after radical prostatectomy: a search database study. J Clin Oncol 2005; 23: 754654
  • 51
    Amling CL. Biochemical recurrence after localized treatment. Urol Clin North Am 2006; 33: 14759
  • 52
    Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999; 281: 15917