• 1
    Lingeman JE. Lithotripsy systems. In SmithAD, BadlaniGH, BagleyDH et al. eds, Smith’s Textbook on Endourology. Hamilton, Ontario, Canada: BC Decker, Inc., 2007: 33342
  • 2
    Bailey MR. Control of Acoustic Cavitation with Application to Lithotripsy.[PhD Dissertation]. University of Texas, Austin, 1997
  • 3
    Zhong P, Cocks FH, Cioanta I, Preminger GM. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy. J Urol 1997; 158: 23238
  • 4
    Huber P, Debus J, Jöchle K et al. Control of cavitation activity by different shockwave pulsing regimes. Phys Med Biol 1999; 44: 142737
  • 5
    Loske AM, Fernandez F, Zendejas H, Paredes M, Castano-Tostado E. Dual pulse shock wave lithotripsy: in vitro and in vivo study. J Urol 2005; 174: 238892
  • 6
    Zhong P, Zhou Y. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. J Acoust Soc Am 2001; 110: 328391
  • 7
    Greenstein A, Sofer M, Matzkin H. Efficacy of the Duet lithotripter using two energy sources for stone fragmentation by shockwaves: an in vitro study. J Endourol 2004; 18: 9425
  • 8
    Evan AP, Willis LR, Lingeman JE, McAteer JA. Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 1998; 78: 18
  • 9
    Lingeman J, Delius M et al. Bioeffects and physical mechanisms of SW effects in SWL. In SeguraJ, ConortP, KhouryS, PakC, PremingerGM, TolleyD eds, Stone Disease: First International Consultation on Stone Disease. Paris: Health Publications, 2003: 25186
  • 10
    Krambeck AE, Gettman MT, Rohlinger AL, Lohse GM, Patterson DE, Segura JW. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of followup. J Urol 2006; 175: 17427
  • 11
    Connors BA, Evan AP, Willis LR, Blomgren PM, Lingeman JE, Fineberg NS. The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. J Am Soc Nephrol 2000; 11: 3108
  • 12
    Willis LR, Evan AP, Connors BA et al. Shockwave lithotripsy: dose-related effects on renal structure, hemodynamics, and tubular function. J Endourol 2005; 19: 90101
  • 13
    Kohrmann KU, Rassweiler JJ, Manning M et al. The clinical introduction of a third generation lithotripter: Modulith SL 20. J Urol 1995; 153: 137983
  • 14
    Dhar NB, Thornton J, Karafa MT, Streem SB. A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J Urol 2004; 172: 22714
  • 15
    Sokolov DL, Bailey MR, Crum LA. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J Acoust Soc Am 2001; 110: 168595
  • 16
    Willis LR, Evan AP, Connors BA et al. Relationship between kidney size, renal injury, and renal impairment induced by shock wave lithotripsy. J Am Soc Nephrol 1999; 10: 175362
  • 17
    Evan AP Jr, Hay DA, Dail WG. SEM of the proximal tubule of the adult rabbit kidney. Anat Rec 1978; 191: 397413
  • 18
    Blomgren PM, Connors BA, Lingeman JE, Willis LR, Evan AP. Quantitation of shock wave lithotripsy-induced lesion in small and large pig kidneys. Anat Rec 1997; 249: 3418
  • 19
    Connors BA, Evan AP, Willis LR et al. Renal nerves mediate changes in contralateral renal blood flow after extracorporeal shockwave lithotripsy. Nephron Physiol 2003; 95: 6775
  • 20
    Nazaroglu H, Akay AF, Bükte Y, Sahin H, Akkus Z, Bilici A. Effects of extracorporeal shock-wave lithotripsy on intrarenal resistive index. Scand J Urol Nephrol 2003; 37: 40812
  • 21
    McAteer JA, Pishchalnikov YA, Pishchalnikova IV et al. Importance of pulse synchrony to stone comminution in dual-pulse lithotripsy: independent characterization of the Direx Duet dual-pulse lithotripter. J Urol 2004; 171: 443 [abstract]
  • 22
    Shao Y, Connors BA, Evan AP, Willis LR, Lifshitz DA, Lingeman JE. Morphological changes induced in the pig kidney by extracorporeal shock wave lithotripsy: nephron injury. Anat Rec A Discov Mol Cell Evol Biol 2003; 275: 97989
  • 23
    Connors BA, Evan AP, Blomgren PM et al. Reducing shock number dramatically decreases lesion size in a juvenile kidney model. J Endourology 2006; 20: 60711
  • 24
    Pishchalnikov YA, Beard S, Pishchalnikova IV, Williams JC Jr, McAteer JA. Bubbles trapped at the coupling surface of the treatment head significantly reduce acoustic energy delivered in shock wave lithotripsy. 5th International Symp Therapeutic Ultrasound, AIP Conf Proc 2006; 829: 6437
  • 25
    Pishchalnikov YA, Neucks JS, Vonderhaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA. Air pockets trapped during routine coupling in dry-head lithotripsy can significantly reduce the delivery of shock wave energy. J Urol 2006; 176: 270610
  • 26
    Sheir KZ, El-Sheikh AM, Ghoneim MA. Synchronous twin-pulse technique to improve efficacy of SWL: preliminary results of an experimental study. J Endourol 2001; 15: 96575
  • 27
    Sheir KZ, Zabihi N, Lee D et al. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation. J Urol 2003; 170: 21904
  • 28
    Sheir KZ, Lee D, Humphrey PA, Morrisey K, Sundaram CP, Clayman RV. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: in vivo tissue effects. Urology 2003; 62: 9647
  • 29
    Sheir KZ, El-Diasty TA, Ismail AM. Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: the first prospective clinical study. BJU Int 2005; 95: 38993