• 1
    Pace KT, Ghiculete D, Harju M, Honey RJ. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 2005; 174: 5959
  • 2
    Madbouly K, El-Tiraifi AM, Seida M, El-Faqih SR, Atassi R, Talic RF. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol 2005; 173: 12730
  • 3
    Yilmaz E, Batislam E, Basar M, Tuglu D, Mert C, Basar H. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology 2005; 66: 11604
  • 4
    Chacko J, Moore M, Sankey N, Chandhoke PS. Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol 2006; 175: 13704
  • 5
    Eisenmenger W, Du XX, Tang C et al. The first clinical results of ‘wide-focus and low-pressure’ ESWL. Ultrasound Med Biol 2002; 28: 76974
  • 6
    Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol 2008; 179: 1947
  • 7
    Delius M, Jordan M, Eizenhoefer H et al. Biological effects of shock waves: kidney haemorrhage by shock waves in dogs – administration rate dependence. Ultrasound Med Biol 1988; 14: 68994
  • 8
    Ryan PC, Jones BJ, Kay EW et al. Acute and chronic bioeffects of single and multiple doses of piezoelectric shockwaves (EDAP LT.01). J Urol 1991; 145: 399404
  • 9
    Vallancien G, Aviles J, Munoz R, Veillon B, Charton M, Brisset JM. Piezoelectric extracorporeal lithotripsy by ultrashort waves with the EDAP LT 01 device. J Urol 1988; 139: 68994
  • 10
    Paterson RF, Lifshitz DA, Lingeman JE et al. Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J Urol 2002; 168: 22115
  • 11
    Vallancien G, Munoz R, Borghi M, Veillon B, Brisset JM, Daudon M. Relationship between the frequency of piezoelectric shock waves and the quality of renal stone fragmentation. In vitro study and clinical implications. Eur Urol 1989; 16: 414
  • 12
    Weir MJ, Tariq N, Honey RJ. Shockwave frequency affects fragmentation in a kidney stone model. J Endourol 2000; 14: 54750
  • 13
    Pishchalnikov YA, McAteer JA, Williams JC Jr, Pishchalnikova IV, Vonderhaar, RJ. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. J Endourol 2006; 20: 53741
  • 14
    Evan AP, McAteer JA, Connors BA, Blomgren PM, Lingeman JE. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. BJU Int 2007; 100: 6248
  • 15
    McAteer JA, Evan AP. The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol 2008; 28: 20013
  • 16
    Pishchalnikov YA, Sapozhnikov OA, Bailey MR et al. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J Endourol 2003; 17: 43546
  • 17
    Huber P, Jochle K, Debus J. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter. Phys Med Biol 1998; 43: 311328
  • 18
    Sapozhnikov OA, Khokhlova VA, Bailey MR et al. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am 2002; 112: 118395
  • 19
    Cleveland RO, McAteer JA. The physics of shock wave lithotripsy. In SmithAD, BadlaniGH, BagleyDH eds, Smith’s Textbook on Endourology. Hamilton, Ontario, Canada: BC Decker, Inc., 2007: 31732
  • 20
    Coleman AJ, Saunders JE. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound Med Biol 1989; 15: 21327
  • 21
    Wiksell H, Kinn AC. Implications of cavitation phenomena for shot intervals in extracorporeal shock wave lithotripsy. Br J Urol 1995; 75: 7203
  • 22
    Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Pishchalnikova IV, Williams JC Jr, McAteer JA. Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses. Acoust Res Lett Online 2005; 6: 2806
  • 23
    Pishchalnikov YA, McAteer JA, Vonderhaar RJ, Pishchalnikova IV, Williams JC Jr, Evan AP. Detection of significant variation in acoustic output of an electromagnetic lithotriptor. J Urol 2006; 176: 22948
  • 24
    Evan AP, McAteer JA, Connors BA et al. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int 2008; 101: 3828
  • 25
    Pishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol 2006; 176: 270610
  • 26
    Handa RK, McAteer JA, Willis LR et al. Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig. BJU Int 2007; 99: 113442
  • 27
    Pishchalnikov YA, McAteer JA, Bailey MR, Pishchalnikova IV, Williams JC Jr, Evan AP. Acoustic shielding by cavitation bubbles in shock wave lithotripsy (SWL). 17th International Symp on Nonlinear Acoustics. AIP Conf Proc 2006; 838: 31922
  • 28
    Tanguay M, Colonius T. Numerical simulation of bubbly cavitating flow in shock wave lithotripsy. 4th International Symp on Cavitation, Pasadena, CA, USA, 2001, 19
  • 29
    Tanguay M, Colonius T. Progress in modelling and simulation of shock wave lithotripsy (SWL). 5th International Symp on Cavitation, number Cav03-OS-2-1-010, Osaka, Japan, 2003, 110
  • 30
    Tanguay M. Computation of Bubbly Cavitating Flow in Shock Wave Lithotripsy. PhD Thesis. California Institute of Technology 2003