SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Clark JA, Wray NP, Ashton CM. Living with treatment decisions: regrets and quality of life among men treated for metastatic prostate cancer. J Clin Oncol 2001; 19: 7280
  • 2
    Rabbani F, Stapleton AM, Kattan MW, Wheeler TM, Scardino PT. Factors predicting recovery of erections after radical prostatectomy. J Urol 2000; 164: 192934
  • 3
    Ross PL, Gerigk C, Gonen M et al. Comparisons of nomograms and urologists’ predictions in prostate cancer. Semin Urol Oncol 2002; 20: 828
  • 4
    Bill-Axelson A, Holmberg L, Ruutu M et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 2005; 352: 197784
  • 5
    Ross PL, Scardino PT, Kattan MW. A catalog of prostate cancer nomograms. J Urol 2001; 165: 15628
  • 6
    Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 1998; 90: 76671
  • 7
    Begg CB, Cramer LD, Venkatraman ES, Rosai J. Comparing tumour staging and grading systems: a case study and a review of the issues, using thymoma as a model. Stat Med 2000; 19: 19972014
  • 8
    D’Amico AV, Whittington R, Malkowicz SB et al. Combination of the preoperative PSA level, biopsy gleason score, percentage of positive biopsies, and MRI T-stage to predict early PSA failure in men with clinically localized prostate cancer. Urology 2000; 55: 5727
  • 9
    D’Amico AV, Moul J, Carroll PR, Sun L, Lubeck D, Chen MH. Cancer-specific mortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate-specific antigen era. J Clin Oncol 2003; 21: 216372
  • 10
    Kattan MW. Comparison of Cox regression with other methods for determining prediction models and nomograms. J Urol 2003; 170: S69
  • 11
    Chun FK, Karakiewicz PI, Briganti A et al. A critical appraisal of logistic regression-based nomograms, artificial neural networks, classification and regression-tree models, look-up tables and risk-group stratification models for prostate cancer. BJU Int 2007; 99: 794800
  • 12
    Ponzone R, Maggiorotto F, Mariani L et al. Comparison of two models for the prediction of nonsentinel node metastases in breast cancer. Am J Surg 2007; 193: 68692
  • 13
    Makarov DV, Trock BJ, Humphreys EB et al. Updated nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical stage, and biopsy Gleason score (Partin tables) based on cases from 2000 to 2007. Urology 2007; 69: 1095101
  • 14
    Partin AW, Mangold LA, Lamm DM, Walsh PC, Epstein JI, Pearson JD. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 2001; 58: 8438
  • 15
    Gallina A, Chun FK, Briganti A et al. Development and split-sample validation of a nomogram predicting the probability of seminal vesicle invasion at radical prostatectomy. Eur Urol 2007; 52: 98105
  • 16
    Chun FK, Steuber T, Erbersdobler A et al. Development and internal validation of a nomogram predicting the probability of prostate cancer Gleason sum upgrading between biopsy and radical prostatectomy pathology. Eur Urol 2006; 49: 8206
  • 17
    Mazumdar M, Glassman JR. Categorizing a prognostic variable: review of methods, code for easy implementation and applications to decision-making about cancer treatments. Stat Med 2000; 19: 11332
  • 18
    Sargent DJ. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer 2001; 91: 163642
  • 19
    Schwarzer G, Schumacher M. Artificial neural networks for diagnosis and prognosis in prostate cancer. Semin Urol Oncol 2002; 20: 8995
  • 20
    Terrin N, Schmid CH, Griffith JL, D’Agostino RB, Selker HP. External validity of predictive models: a comparison of logistic regression, classification trees, and neural networks. J Clin Epidemiol 2003; 56: 7219
  • 21
    Chun FK, Graefen M, Briganti A et al. Initial biopsy outcome prediction – head-to-head comparison of a logistic regression-based nomogram versus artificial neural network. Eur Urol 2007; 51: 123640
  • 22
    Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002; 35: 3529
  • 23
    Stephan C, Meyer HA, Cammann H et al. Initial biopsy outcome prediction – head-to-head comparison of a logistic regression-based nomogram versus artificial neural network. Eur Urol 2007; 51: 123643

REFERENCES

REFERENCES

  • 1
    Specht MC, Kattan MW, Gonen M, Fey J, Van Zee KJ. Predicting nonsentinel node status after positive sentinel lymph biopsy for breast cancer: clinicians versus nomogram. Ann Surg Oncol 2005; 12: 6549
  • 2
    Walz J, Gallina A, Perrotte P et al. Clinicians are poor raters of life-expectancy before radical prostatectomy or definitive radiotherapy for localized prostate cancer. BJU Int 2007; 100: 12548
  • 3
    Walz J, Gallina A, Saad F et al. A nomogram predicting 10-year life expectancy in candidates for radical prostatectomy or radiotherapy for prostate cancer. J Clin Oncol 2007; 25: 357681
  • 4
    Capitanio U, Jeldres C, Shariat SF, Karakiewicz P. Clinicians are most familiar with nomograms and rate their clinical usefulness highest, look-up tables are second best. Eur Urol 2008; doi:10.1016/j.eururo.2008.04. 082