SEARCH

SEARCH BY CITATION

Keywords:

  • HB-EGF;
  • APF;
  • interstitial cystitis;
  • mitogen activated protein kinase

OBJECTIVE

To delineate the mechanism underlying the potential functional relationship between interstitial cystitis antiproliferative factor (APF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF), as APF has previously been shown to decrease the proliferation rate of normal bladder epithelial cells and the amount of HB-EGF produced by these cells.

MATERIALS AND METHODS

APF-responsive T24 transitional carcinoma bladder cells were treated with high-pressure liquid chromatography-purified native APF with or without HB-EGF to determine the involvement of signalling pathways and proliferation by Western blot analysis, p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (Erk)/MAPK assays, and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay.

RESULTS

Cyclic stretch induced the secretion of HB-EGF from T24 cells overexpressing the HB-EGF precursor, resulting in enhanced proliferation. T24 cells treated with APF had increased p38MAPK activity and suppressed cell growth, events that were both reversed by treatment with a p38MAPK-selective inhibitor. Activation of Erk/MAPK by HB-EGF was inhibited by APF, and APF did not stimulate p38MAPK in the presence of soluble HB-EGF or when cells overexpressed constitutively secreted HB-EGF. Lastly, APF inhibitory effects on cell growth were attenuated by HB-EGF.

CONCLUSIONS

These results indicate that HB-EGF and APF are functionally antagonistic and signal through parallel MAPK signalling pathways in bladder cells.