SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Evan AP, Willis LR. Extracorporeal shock wave lithotripsy: complications. In Smith AD, Badlani GH, Badley DH et al. eds, Smith's Textbook on Endourology, Hamilton, Ontario, Canada: BC Decker, 2007: 35365
  • 2
    Handa RK, Evan AP. A chronic outcome of shock wave lithotripsy is parenchymal fibrosis. Urol Res 2010; 38: 3015
  • 3
    Janetschek G, Frauscher F, Knapp R, Hofle G, Perschel G, Bartsch G. New onset hypertension after extracorporeal shock wave lithotripsy: age related incidence and prediction by intrarenal resistive index. J Urol 1997; 158: 34651
  • 4
    Parks JH, Worcester EM, Coe FL, Evan AP, Lingeman JE. Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int 2004; 66: 77785
  • 5
    Krambeck AE, Gettman MT, Rohlinger AL, Lohse CM, Patterson DE, Segura JW. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of follow up. J Urol 2006; 175: 17427
  • 6
    Lingeman JE, McAteer JA, Gnessin E, Evan AP. Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol 2009; 6: 66070
  • 7
    Willis LR, Evan AP, Connors BA, Handa RK, Blomgren PM, Lingeman JE. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. J Am Soc Nephrol 2006; 17: 66373
  • 8
    Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. BJU Int 2009; 103: 1047
  • 9
    Demirci D, Sofikerim M, Yalcin E, Ekmekcioglu O, Gulmez I, Karacagil M. Comparison of conventional and step-wise shockwave lithotripsy in management of urinary calculi. J Endourol 2007; 21: 140710
  • 10
    Mitterberger M, Pinggera GM, Neururer R et al. Multimodal evaluation of renal perfusional changes due to extracorporeal shock wave lithotripsy. BJU Int 2008; 101: 7315
  • 11
    Honey RJD, Ray AA, Ghiculete D, Pace KT. Shock wave lithotripsy: a randomized, double-blind trial to compare immediate versus delayed voltage escalation. Urology 2010; 75: 3844
  • 12
    Lambert EH, Walsh R, Moreno MW, Gupta M. Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial. J Urol 2010; 183: 5804
  • 13
    Willis LR, Evan AP, Connors BA, Blomgren P, Fineberg NS, Lingeman JE. Relationship between kidney size, renal injury, and renal impairment induced by shock wave lithotripsy. J Am Soc Nephrol 1999; 10: 175362
  • 14
    Connors BA, Evan AP, Willis LR, Blomgren PM, Lingeman JE, Fineberg NS. The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. J Am Soc Nephrol 2000; 11: 31018
  • 15
    Rassweiler J, Kohrmann KU, Back W et al. Experimental basis for shockwave-induced renal trauma in the model of the canine kidney. World J Urol 1993; 11: 4353
  • 16
    Nazaroglu H, Akay AF, Bukte Y, Sahin H, Akkus Z, Bilici A. Effects of extracorporeal shock-wave lithotripsy on intrarenal resistive index. Scand J Urol Nephrol 2003; 37: 40812
  • 17
    Handa RK, Bailey MR, Paun M et al. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. J Urol 2008; 103: 12704
  • 18
    Connors BA, Evan AP, Blomgren PM et al. Reducing shock number dramatically decreases lesion size in a juvenile kidney model. J Endourol 2006; 20: 60711
  • 19
    Chew BH, Zavaglia B, Sutton C et al. Twenty-year prevalence of diabetes mellitus and hypertension in patients receiving shock-wave lithotripsy for urolithiasis. BJU Int 2012; 109: 4449
  • 20
    Sarica K, Yencilek F. Prevention of shockwave induced functional and morphological alterations: an overview. Arch Ital Urol Androl 2008; 80: 2733
  • 21
    Madbouly K, El-Tiraifi AM, Seida M, El-Faqih SR, Atassi R, Talic RF. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol 2005; 173: 12730
  • 22
    Pace KT, Ghiculete D, Harju M. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 2005; 174: 5959
  • 23
    Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol 2008; 179: 1947
  • 24
    Honey RJD, Schuler TD, Ghiculete D, Pace KT. A randomized, double blind trial to compare shock wave frequencies of 60 and 120 shocks per minute for upper ureteral stones. J Urol 2009; 182: 141823
  • 25
    Connors BA, Evan AP, Blomgren PM et al. Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int 2009; 104: 10048
  • 26
    Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol 2004; 172: 34954
  • 27
    Maloney ME, Marguet CG, Zhou Y et al. Progressive increase of lithotripter output produces better in-vivo stone comminution. J Endourol 2006; 20: 6036
  • 28
    Yong DZ, Lipkin ME, Simmons WN et al. Optimization of treatment strategy used during shockwave lithotripsy to maximize stone fragmentation efficiency. J Endourol 2011; 25: 150711
  • 29
    Cleveland RO, Bailey MR, Fineberg N et al. Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3. Rev Sci Instrum 2000; 71: 251424