SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277300
  • 2
    Ryan CJ, Elkin EP, Small EJ, Duchane J, Carroll P. Reduced incidence of bony metastasis at initial prostate cancer diagnosis: data from CaPSURE. Urol Oncol 2006; 24: 396402
  • 3
    Litvinov IV, De Marzo AM, Isaacs JT. Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J Clin Endocrinol Metab 2003; 88: 297282
  • 4
    Hayward SW, Cunha GR. The prostate: development and physiology. Radiol Clin North Am 2000; 38: 114
  • 5
    Ohno S. Major sex-determining genes. Monogr Endocrinol 1978; 11: 1140
  • 6
    Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004; 25: 276308
  • 7
    Migliaccio A, Castoria G, Di Domenico M et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 2000; 19: 540617
  • 8
    Kousteni S, Bellido T, Plotkin LI et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001; 104: 71930
  • 9
    Castoria G, Lombardi M, Barone MV et al. Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J Cell Biol 2003; 161: 54756
  • 10
    Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 2001; 93: 168797
  • 11
    Isbarn H, Pinthus JH, Marks LS et al. Testosterone and prostate cancer: revisiting old paradigms. Eur Urol 2009; 56: 4856
  • 12
    Nishiyama T, Hashimoto Y, Takahashi K. The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 2004; 10: 71216
  • 13
    Yang M, Xie W, Mostaghel E et al. SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J Clin Oncol 2011; 29: 256573
  • 14
    Chang KH, Li R, Papari-Zareei M et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc Natl Acad Sci U S A 2011; 108: 1372833
  • 15
    Bhanalaph T, Varkarakis MJ, Murphy GP. Current status of bilateral adrenalectomy or advanced prostatic carcinoma. Ann Surg 1974; 179: 1723
  • 16
    Witjes FJ, Debruyne FM, Fernandez del Moral P, Geboers AD. Ketoconazole high dose in management of hormonally pretreated patients with progressive metastatic prostate cancer. Dutch South-Eastern Urological Cooperative Group. Urology 1989; 33: 4115
  • 17
    Fung KM, Samara EN, Wong C et al. Increased expression of type 2 3alpha-hydroxysteroid dehydrogenase/type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) and its relationship with androgen receptor in prostate carcinoma. Endocr Relat Cancer 2006; 13: 16980
  • 18
    Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005; 11: 46537
  • 19
    Stanbrough M, Bubley GJ, Ross K et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006; 66: 281525
  • 20
    Locke JA, Nelson CC, Adomat HH, Hendy SC, Gleave ME, Guns ES. Steroidogenesis inhibitors alter but do not eliminate androgen synthesis mechanisms during progression to castration-resistance in LNCaP prostate xenografts. J Steroid Biochem Mol Biol 2009; 115: 12636
  • 21
    Belanger B, Belanger A, Labrie F, Dupont A, Cusan L, Monfette G. Comparison of residual C-19 steroids in plasma and prostatic tissue of human, rat and guinea pig after castration: unique importance of extratesticular androgens in men. J Steroid Biochem 1989; 32: 6958
  • 22
    Visakorpi T, Hyytinen E, Koivisto P et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 4016
  • 23
    Koivisto P, Kononen J, Palmberg C et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57: 3149
  • 24
    Bubendorf L, Kononen J, Koivisto P et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 1999; 59: 8036
  • 25
    Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001; 1: 3445
  • 26
    Gregory CW, Johnson RT Jr, Mohler JL, French FS, Wilson EM. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 2001; 61: 28928
  • 27
    Kawata H, Ishikura N, Watanabe M, Nishimoto A, Tsunenari T, Aoki Y. Prolonged treatment with bicalutamide induces androgen receptor overexpression and androgen hypersensitivity. Prostate 2010; 70: 74554
  • 28
    Culig Z, Klocker H, Eberle J et al. DNA sequence of the androgen receptor in prostatic tumor cell lines and tissue specimens assessed by means of the polymerase chain reaction. Prostate 1993; 22: 1122
  • 29
    Koivisto P, Kolmer M, Visakorpi T, Kallioniemi OP. Androgen receptor gene and hormonal therapy failure of prostate cancer. Am J Pathol 1998; 152: 19
  • 30
    Fenton MA, Shuster TD, Fertig AM et al. Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res 1997; 3: 13838
  • 31
    Culig Z, Hoffmann J, Erdel M et al. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer 1999; 81: 24251
  • 32
    Scher HI, Kelly WK. Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J Clin Oncol 1993; 11: 156672
  • 33
    Zhao XY, Malloy PJ, Krishnan AV et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 2000; 6: 7036
  • 34
    Kelly WK. Endocrine withdrawal syndrome and its relevance to the management of hormone refractory prostate cancer. Eur Urol 1998; 34 (Suppl. 3): 1823
  • 35
    Gao L, Alumkal J. Epigenetic regulation of androgen receptor signaling in prostate cancer. Epigenetics 2010; 5: 1004
  • 36
    Perry AS, Watson RW, Lawler M, Hollywood D. The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol 2010; 7: 66880
  • 37
    Wang LG, Ossowski L, Ferrari AC. Androgen receptor level controlled by a suppressor complex lost in an androgen-independent prostate cancer cell line. Oncogene 2004; 23: 517584
  • 38
    Karpf AR, Bai S, James SR, Mohler JL, Wilson EM. Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP. Mol Cancer Res 2009; 7: 52335
  • 39
    Kraus S, Gioeli D, Vomastek T, Gordon V, Weber MJ. Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Res 2006; 66: 1104754
  • 40
    Nakayama T, Watanabe M, Suzuki H et al. Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab Invest 2000; 80: 178996
  • 41
    Bradley D, Rathkopf D, Dunn R et al. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: a study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer 2009; 115: 55419
  • 42
    Holter E, Kotaja N, Makela S et al. Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX-1. Mol Endocrinol 2002; 16: 51528
  • 43
    Hu R, Dunn TA, Wei S et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69: 1622
  • 44
    Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008; 68: 546977
  • 45
    Watson PA, Chen YF, Balbas MD et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A 2010; 107: 1675965
  • 46
    Rocchi P, So A, Kojima S et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 2004; 64: 6595602
  • 47
    Rocchi P, Beraldi E, Ettinger S et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 2005; 65: 1108393
  • 48
    Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999; 5: 2805
  • 49
    Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 1995; 55: 443845
  • 50
    Miyake H, Nelson C, Rennie PS, Gleave ME. Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3′-kinase pathway. Endocrinology 2000; 141: 225765
  • 51
    Wang L, Hsu CL, Chang C. Androgen receptor corepressors: an overview. Prostate 2005; 63: 11730
  • 52
    Loy CJ, Sim KS, Yong EL. Filamin-A fragment localizes to the nucleus to regulate androgen receptor and coactivator functions. Proc Natl Acad Sci U S A 2003; 100: 45627
  • 53
    Gross M, Liu B, Tan J, French FS, Carey M, Shuai K. Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene 2001; 20: 38807
  • 54
    Attard G, Reid AH, Yap TA et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 2008; 26: 456371
  • 55
    Ryan CJ, Smith MR, Fong L et al. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J Clin Oncol 2010; 28: 14818
  • 56
    Attard G, Reid AH, A'Hern R et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol 2009; 27: 37428
  • 57
    Danila DC, Morris MJ, de Bono JS et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J Clin Oncol 2010; 28: 1496501
  • 58
    de Bono JS, Logothetis CJ, Molina A et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 19952005
  • 59
    Johnson & Johnson, Inc. Study Unblinded: ZYTIGA® (abiraterone acetate) Plus Prednisone for Asymptomatic or Mildly Symptomatic Chemotherapy-Naïve Patients with Metastatic Castration-Resistant Prostate Cancer. Available at: http://www.jnj.com/connect/news/all/study-unblinded-zytiga-abiraterone-acetate-plus-prednisone-for-asymptomatic-or-mildly-symptomatic-chemotherapy-naive-patients-with-metastatic-castration-resistant-prostate-cancer. Accessed 23 March 2012
  • 60
    Chen CD, Welsbie DS, Tran C et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 339
  • 61
    Tran C, Ouk S, Clegg NJ et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009; 324: 78790
  • 62
    Scher HI, Beer TM, Higano CS et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 2010; 375: 143746
  • 63
    Higano CS, Beer TM, Taplin E et al. Antitumor activity of MDV3100 in pre- and post-docetaxel advanced prostate cancer: long-term follow-up of a phase I/II study. J Clin Oncol 2011; 29 (Suppl. 7): abstract 134
  • 64
    Scher HI, Fizazi K, Saad F et al. Effect of MDV3100, an androgen receptor signaling inhibitor (ARSI), on overall survival in patients with prostate cancer postdocetaxel: results from the phase III AFFIRM study. J Clin Oncol 2012; 30 (Suppl. 5): abstract LBA1
  • 65
    Ahlem C, Kennedy M, Page T et al. 17α-alkynyl 3α, 17β-androstanediol non-clinical and clinical pharmacology, pharmacokinetics and metabolism. Invest New Drugs 2012; 30: 5978
  • 66
    Montgomery RB, Morris M, Ryan C et al. Results of preclinical and clinical phase I/II open-label dose-ranging trial with HE3235, a synthetic adrenal hormone, in castrate-resistant prostate cancer. Mol Cancer Ther 2009; 8 (Meeting Abstract Supplement): A221
  • 67
    Montgomery RB, Morris MJ, Ryan CJ et al. HE3235, a synthetic adrenal hormone, in patients with castration-resistant prostate cancer (CRPC): results of phase I/II clinical trial. J Clin Oncol 2010; 28 (Suppl.): 15s, abstracy 4674
  • 68
    Harbor BioSciences Inc. Harbor BioSciences Apoptone® for Prostate Cancer Shows A Partial Overall Response-New Positive Phase I/Iia Data. Weber R ed. Chief Financial Officer, San Diego, California, USA: Harbor BioSciences, Inc., 2010
  • 69
    Welsbie DS, Xu J, Chen Y et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res 2009; 69: 95866
  • 70
    Rathkopf D, Wong BY, Ross RW et al. A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol 2010; 66: 1819
  • 71
    Festuccia C, Gravina GL, D'Alessandro AM et al. Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr Relat Cancer 2009; 16: 40113
  • 72
    Zorn CS, Wojno KJ, McCabe MT, Kuefer R, Gschwend JE, Day ML. 5-aza-2′-deoxycytidine delays androgen-independent disease and improves survival in the transgenic adenocarcinoma of the mouse prostate mouse model of prostate cancer. Clin Cancer Res 2007; 13: 213643
  • 73
    Montgomery RB, Eisenberger MA, Rettig M et al. Phase I clinical trial of galeterone (TOK-001), a multifunctional antiandrogen and CYP17 inhibitor in castration resistant prostate cancer (CRPC). J Clin Oncol 2012; 30 (Suppl.): abstract 4665
  • 74
    Sawyers CL. New insights into the prostate cancer genome and therapeutic implications. Proceedings of the Prostate Cancer Foundation Annual Scientific Retreat, 2010 September 15–16, 2010; Washington DC; 2010. Available at: http://www.pcf.org/atf/cf/%7B7C77D6A2-5859-4D60-AF47-132FD0F85892%7D/PCFStateScience2010.pdf. Accessed 23 March 2012
  • 75
    Rathkopf DE, Morris MJ, Danila DC et al. A phase I study of the androgen signaling inhibitor ARN-509 in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2012; 30 (Suppl.): abstract 4548
  • 76
    Rathkopf DE, Shore N, Antonarakis ES et al. A phase II study of the androgen signaling inhibitor ARN-509 in patients with castration-resistant prostate cancer (CRPC). J Clin Oncol 2012; 30 (Suppl.): abstract TPS4697
  • 77
    Andersen RJ, Mawji NR, Wang J et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 2010; 17: 53546