• 1
    Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation 2007; 115: 387397.
  • 2
    Ondicova K, Mravec B. Multilevel interactions between the sympathetic and parasympathetic nervous systems: a mini-review. Endocr Regul 2010; 44: 6975.
  • 3
    Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003; 26: 15531579.
  • 4
    Diabetes Control, Complications Trial. The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia 1998; 41: 416423.
  • 5
    Kennedy WR, Navarro X, Sutherland DE. Neuropathy profile of diabetic patients in a pancreas transplantation program. Neurology 1995; 45: 773780.
  • 6
    Ziegler D, Gries FA, Muhlen H, Rathmann W, Spuler M, Lessmann F. Prevalence and clinical correlates of cardiovascular autonomic and peripheral diabetic neuropathy in patients attending diabetes centers. The Diacan Multicenter Study Group. Diabetes Metab 1993; 19: 143151.
  • 7
    Wu JS, Yang YC, Lin TS, Huang YH, Chen JJ, Lu FH et al. Epidemiological evidence of altered cardiac autonomic function in subjects with impaired glucose tolerance but not isolated impaired fasting glucose. J Clin Endocrinol Metab 2007; 92: 38853889.
  • 8
    Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 2003; 26: 18951901.
  • 9
    Beijers HJ, Ferreira I, Bravenboer B, Dekker JM, Nijpels G, Heine RJ et al. Microalbuminuria and cardiovascular autonomic dysfunction are independently associated with cardiovascular mortality: evidence for distinct pathways: the Hoorn Study. Diabetes Care 2009; 32: 16981703.
  • 10
    Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Doring A et al. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and non-diabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care 2008; 31: 556561.
  • 11
    Orchard TJ, Lloyd CE, Maser RE, Kuller LH. Why does diabetic autonomic neuropathy predict IDDM mortality? An analysis from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Res Clin Pract 1996; 34: S165S171.
  • 12
    Pop-Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation 2009; 119: 28862893.
  • 13
    White NH, Cleary PA, Dahms W, Goldstein D, Malone J, Tamborlane WV. Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT). J Pediatr 2001; 139: 804812.
  • 14
    Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348: 383393.
  • 15
    Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358: 580591.
  • 16
    Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360: 129139.
  • 17
    LeRoith D, Fonseca V, Vinik A. Metabolic memory in diabetes—focus on insulin. Diabetes Metab Res Rev 2005; 21: 8590.
  • 18
    Casellini CM, Barlow PM, Rice AL, Casey M, Simmons K, Pittenger G et al. A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-β inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy. Diabetes Care 2007; 30: 896902.
  • 19
    Ceriello A, Esposito K, Ihnat M, Thorpe J, Giugliano D. Long-term glycemic control influences the long-lasting effect of hyperglycemia on endothelial function in type 1 diabetes. J Clin Endocrinol Metab 2009; 94: 27512756.
  • 20
    Cumbie BC, Hermayer KL. Current concepts in targeted therapies for the pathophysiology of diabetic microvascular complications. Vasc Health Risk Manag 2007; 3: 823832.
  • 21
    Witte DR, Tesfaye S, Chaturvedi N, Eaton SE, Kempler P, Fuller JH. Risk factors for cardiac autonomic neuropathy in type 1 diabetes mellitus. Diabetologia 2005; 48: 164171.
  • 22
    Stella P, Ellis D, Maser RE, Orchard TJ. Cardiovascular autonomic neuropathy (expiration and inspiration ratio) in type 1 diabetes. Incidence and predictors. J Diabetes Complications 2000; 14: 16.
  • 23
    Kles KA, Vinik AI. Pathophysiology and treatment of diabetic peripheral neuropathy: the case for diabetic neurovascular function as an essential component. Curr Diabetes Rev 2006; 2: 131145.
  • 24
    Lampert R, Bremner JD, Su S, Miller A, Lee F, Cheema F et al. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am Heart J 2008; 156: 759757.
  • 25
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405: 458462.
  • 26
    Mohamed-Ali V, Flower L, Sethi J, Hotamisligil G, Gray R, Humphries SE et al. β-Adrenergic regulation of IL-6 release from adipose tissue: in vivo and in vitro studies. J Clin Endocrinol Metab 2001; 86: 58645869.
  • 27
    Soszynski D, Kozak W, Conn CA, Rudolph K, Kluger MJ. β-Adrenoceptor antagonists suppress elevation in body temperature and increase in plasma IL-6 in rats exposed to open field. Neuroendocrinology 1996; 63: 459467.
  • 28
    Herder C, Lankisch M, Ziegler D, Rathmann W, Koenig W, Illig T et al. Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany). Diabetes Care 2009; 32: 680682.
  • 29
    Carlyle M, Jones OB, Kuo JJ, Hall JE. Chronic cardiovascular and renal actions of leptin: role of adrenergic activity. Hypertension 2002; 39: 496501.
  • 30
    Paolisso G, Manzella D, Montano N, Gambardella A, Varricchio M. Plasma leptin concentrations and cardiac autonomic nervous system in healthy subjects with different body weights. J Clin Endocrinol Metab 2000; 85: 18101814.
  • 31
    Murialdo G, Casu M, Falchero M, Brugnolo A, Patrone V, Cerro PF et al. Alterations in the autonomic control of heart rate variability in patients with anorexia or bulimia nervosa: correlations between sympathovagal activity, clinical features, and leptin levels. J Endocrinol Invest 2007; 30: 356362.
  • 32
    Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005; 115: 35793586.
  • 33
    da Costa Goncalves AC, Tank J, Diedrich A, Hilzendeger A, Plehm R, Bader M et al. Diabetic hypertensive leptin receptor-deficient db/db mice develop cardioregulatory autonomic dysfunction. Hypertension 2009; 53: 387392.
  • 34
    Imai J, Katagiri H, Yamada T, Ishigaki Y, Ogihara T, Uno K et al. Cold exposure suppresses serum adiponectin levels through sympathetic nerve activation in mice. Obesity (Silver Spring) 2006; 14: 11321141.
  • 35
    Wakabayashi S, Aso Y. Adiponectin concentrations in sera from patients with type 2 diabetes are negatively associated with sympathovagal balance as evaluated by power spectral analysis of heart rate variation. Diabetes Care 2004; 27: 23922397.
  • 36
    Hoyda TD, Samson WK, Ferguson AV. Adiponectin depolarizes parvocellular paraventricular nucleus neurons controlling neuroendocrine and autonomic function. Endocrinology 2009; 150: 832840.
  • 37
    Hoyda TD, Smith PM, Ferguson AV. Adiponectin acts in the nucleus of the solitary tract to decrease blood pressure by modulating the excitability of neuropeptide Y neurons. Brain Res 2009; 1256: 7684.
  • 38
    Tanida M, Shen J, Horii Y, Matsuda M, Kihara S, Funahashi T et al. Effects of adiponectin on the renal sympathetic nerve activity and blood pressure in rats. Exp Biol Med (Maywood) 2007; 232: 390397.
  • 39
    Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A et al. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat—functional implications. J Clin Invest 2002; 110: 12431250.
  • 40
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87: 315424.
  • 41
    Szabo C, Mabley JG, Moeller SM, Shimanovich R, Pacher P, Virag L et al. Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 2002; 8: 571580.
  • 42
    Virag L, Szabo E, Gergely P, Szabo C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 2003; 141: 113124.
  • 43
    Obrosova IG, Drel VR, Oltman CL, Mashtalir N, Tibrewala J, Groves JT et al. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 2007; 293: E1645E1655.
  • 44
    Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 2004; 27: 21782183.
  • 45
    Ceriello A, Assaloni R, Da RR, Maier A, Quagliaro L, Piconi L et al. Effect of irbesartan on nitrotyrosine generation in non-hypertensive diabetic patients. Diabetologia 2004; 47: 15351540.
  • 46
    Vinik A, Parson H, Ullal J. The role of PPARs in the microvascular dysfunction in diabetes. Vascul Pharmacol 2006; 45: 5464.
  • 47
    Julius U, Drel VR, Grassler J, Obrosova IG. Nitrosylated proteins in monocytes as a new marker of oxidative–nitrosative stress in diabetic subjects with macroangiopathy. Exp Clin Endocrinol Diabetes 2009; 117: 7277.
  • 48
    Kellogg AP, Converso K, Wiggin T, Stevens M, Pop-Busui R. Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes. Am J Physiol Heart Circ Physiol 2009; 296: H453H461.
  • 49
    Petrova M, Townsend R, Teff KL. Prolonged (48-h) modest hyperinsulinemia decreases nocturnal heart rate variability and attenuates the nocturnal decrease in blood pressure in lean, normotensive humans. J Clin Endocrinol Metab 2006; 91: 851859.
  • 50
    Ziegler D, Zentai C, Perz S, Rathmann W, Haastert B, Meisinger C et al. Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Exp Clin Endocrinol Diabetes 2006; 114: 153159.
  • 51
    Licht CM, Vreeburg SA, van Reedt Dortland AK, Giltay EJ, Hoogendijk WJ, Derijk RH et al. Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic–pituitary–adrenal axis activity is associated with metabolic abnormalities. J Clin Endocrinol Metab 2010; 95: 24582466.
  • 52
    Chang CJ, Yang YC, Lu FH, Lin TS, Chen JJ, Yeh TL et al. Altered cardiac autonomic function may precede insulin resistance in metabolic syndrome. Am J Med 2010; 123: 432438.
  • 53
    Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension 2003; 42: 474480.
  • 54
    Carnethon MR, Jacobs DR Jr, Sidney S, Liu K. Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care 2003; 26: 30353041.
  • 55
    Bottini P, Redolfi S, Dottorini ML, Tantucci C. Autonomic neuropathy increases the risk of obstructive sleep apnea in obese diabetics. Respiration 2008; 75: 265271.
  • 56
    Reynolds EB, Seda G, Ware JC, Vinik AI, Risk MR, Fishback NF. Autonomic function in sleep apnea patients: increased heart rate variability except during REM sleep in obese patients. Sleep Breath 2007; 11: 5360.
  • 57
    West SD, Nicoll DJ, Stradling JR. Prevalence of obstructive sleep apnoea in men with type 2 diabetes. Thorax 2006; 61: 945950.
  • 58
    Bottini P, Dottorini ML, Cristina CM, Casucci G, Tantucci C. Sleep-disordered breathing in non-obese diabetic subjects with autonomic neuropathy. Eur Respir J 2003; 22: 654660.
  • 59
    Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand 2003; 177: 385390.
  • 60
    Aytemir K, Deniz A, Yavuz B, Ugur DA, Sahiner L, Ciftci O et al. Increased myocardial vulnerability and autonomic nervous system imbalance in obstructive sleep apnea syndrome. Respir Med 2007; 101: 12771282.
  • 61
    Adlakha A, Shephard JW Jr. Cardiac arrythmias during normal sleep and in obstructive sleep apnea syndrome. Sleep Med Rev 1998; 2: 4560.
  • 62
    Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea–hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 2005; 365: 10461053.
  • 63
    Gami AS, Howard DE, Olson EJ, Somers VK. Day–night pattern of sudden death in obstructive sleep apnea. N Engl J Med 2005; 352: 12061214.
  • 64
    Tasali E, Ip MS. Obstructive sleep apnea and metabolic syndrome: alterations in glucose metabolism and inflammation. Proc Am Thorac Soc 2008; 5: 207217.
  • 65
    Tuomilehto H, Peltonen M, Partinen M, Seppa J, Saaristo T, Korpi-Hyovalti E et al. Sleep duration is associated with an increased risk for the prevalence of type 2 diabetes in middle-aged women – The FIN-D2D survey. Sleep Med 2008; 9: 221227.
  • 66
    Maser RE, Lenhard MJ, Rizzo AA, Vasile AA. Continuous positive airway pressure therapy improves cardiovascular autonomic function for persons with sleep-disordered breathing. Chest 2008; 133: 8691.
  • 67
    Craig S, Pepperell JC, Kohler M, Crosthwaite N, Davies RJ, Stradling JR. Continuous positive airway pressure treatment for obstructive sleep apnoea reduces resting heart rate but does not affect dysrhythmias: a randomised controlled trial. J Sleep Res 2009; 18: 329336.
  • 68
    Dagogo-Jack SE, Craft S, Cryer PE. Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus. Recent antecedent hypoglycemia reduces autonomic responses to, symptoms of, and defense against subsequent hypoglycemia. J Clin Invest 1993; 91: 819828.
  • 69
    Adler GK, Bonyhay I, Failing H, Waring E, Dotson S, Freeman R. Antecedent hypoglycemia impairs autonomic cardiovascular function: implications for rigorous glycemic control. Diabetes 2009; 58: 360366.
  • 70
    Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 25452559.
  • 71
    Pop-Busui R, Evans G, Gerstein H, Fonseca V, Fleg J, Hoogwerf B et al. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care 2010; 33: 15781584.
  • 72
    Carnethon MR, Prineas RJ, Temprosa M, Zhang ZM, Uwaifo G, Molitch ME. The association among autonomic nervous system function, incident diabetes, and intervention arm in the Diabetes Prevention Program. Diabetes Care 2006; 29: 914919.
  • 73
    Colberg S, Swain D, Vinik A. Use of heart rate reserve and rating of perceived exertion to prescribe exercise intensity in diabetic autonomic neuropathy. Diabetes Care 2003; 26: 986990.
  • 74
    Colberg SR, Stansberry KB, McNitt PM, Vinik AI. Chronic exercise is associated with enhanced cutaneous blood flow in type 2 diabetes. J Diabetes Complications 2002; 16: 139145.
  • 75
    Michalsen A, Knoblauch NT, Lehmann N, Grossman P, Kerkhoff G, Wilhelm FH et al. Effects of lifestyle modification on the progression of coronary atherosclerosis, autonomic function, and angina—the role of GNB3 C825T polymorphism. Am Heart J 2006; 151: 870877.
  • 76
    Howorka K, Pumprla J, Haber P, Koller-Strametz J, Mondrzyk J, Schabmann A. Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. Cardiovasc Res 1997; 34: 206214.
  • 77
    Motooka M, Koike H, Yokoyama T, Kennedy NL. Effect of dog-walking on autonomic nervous activity in senior citizens. Med J Aust 2006; 184: 6063.
  • 78
    Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant α-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care 1997; 20: 369373.
  • 79
    Ziegler D, Weise F, Langen KJ, Piolot R, Boy C, Hubinger A et al. Effect of glycaemic control on myocardial sympathetic innervation assessed by metaiodobenzylguanidine scintigraphy: a 4-year prospective study in IDDM patients. Diabetologia 1998; 41: 443451.
  • 80
    Colombo J, Iffrig K, Aysin E, Aysin B, Vinik A. Sympathetic/parasympathetic imbalance is associated with symptoms of orthostasis. Diabetes 2007; 56: A613.