Does energy availability influence classical patterns of spatial variation in exotic species richness?

Authors


*Correspondence: Karl L. Evans, Biodiversity & Macroecology Group, University of Sheffield, Sheffield, S10 2TN, UK, E-mail: karl.evans@sheffield.ac.uk

ABSTRACT

Aim  At macroecological scales, exotic species richness is frequently positively correlated with human population density. Such patterns are typically thought to arise because high human densities are associated with increased introduction effort and/or habitat modification and disturbance. Exotic and native species richness are also frequently positively correlated, although the causal mechanisms remain unclear. Energy availability frequently explains much of the variation in species richness and we test whether such species–energy relationships may influence the relationships of exotic species richness with human population density and native species richness.

Location  Great Britain.

Methods  We first investigate how spatial variation in the distributions of the 10 exotic bird species is related to energy availability. We then model exotic species richness using native avian species richness, human population density and energy availability as predictors. Species richness is modelled using two sets of models: one assumes independent errors and the other takes spatial correlation into account.

Results  The probability of each exotic species occurring, in a 10-km quadrat, increases with energy availability. Exotic species richness is positively correlated with energy availability, human population density and native species richness in univariate tests. When taking energy availability into account, exotic species richness is negligibly influenced by human population density, but remains positively associated with native species richness.

Main conclusions  We provide one of the few demonstrations that energy availability exerts a strong positive influence on exotic species richness. Within our data, the positive relationship between exotic species richness and human population density probably arises because both variables increase with energy availability, and may be independent of the influence of human density on the probability of establishment. Positive correlations between exotic and native species richness remain when controlling for the influence of energy on species richness. The relevance of such a finding to the debate on the relationship between diversity and invasibility is discussed.

Ancillary