• Arecaceae;
  • biogeography;
  • bioindicator;
  • exotic species;
  • global warming;
  • invasion;
  • northernmost palm population;
  • Ticino;
  • Trachycarpus fortunei;
  • vegetation shift.


Aim  Many species are currently expanding their ranges in response to climate change, but the mechanisms underlying these range expansions are in many cases poorly understood. In this paper we explore potential climatic factors governing the recent establishment of new palm populations far to the north of any other viable palm population in the world.

Location  Southern Switzerland, Europe, Asia and the world.

Methods  We identified ecological threshold values for the target species, Trachycarpus fortunei, based on gridded climate data, altitude and distributional records from the native range and applied them to the introduced range using local field monitoring and measured meteorological data as well as a bioclimatic model.

Results  We identified a strong relationship between minimum winter temperatures, influenced by growing season length and the distribution of the palm in its native range. Recent climate change strongly coincides with the palm's recent spread into southern Switzerland, which is in concert with the expansion of the global range of palms across various continents.

Main conclusions  Our results strongly suggest that the expansion of palms into (semi-)natural forests is driven by changes in winter temperature and growing season length and not by delayed population expansion. This implies that this rapid expansion is likely to continue in the future under a warming climate. Palms in general, and T. fortunei in particular, are significant bioindicators across continents for present-day climate change and reflect a global signal towards warmer conditions.