The importance of biotic interactions for modelling species distributions under climate change


*Correspondence: Miguel B. Araújo, Departamento de Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain. E-mail:


Aim  There is a debate as to whether biotic interactions exert a dominant role in governing species distributions at macroecological scales. The prevailing idea is that climate is the key limiting factor; thus models that use present-day climate–species range relationships are expected to provide reasonable means to quantify the impacts of climate change on species distributions. However, there is little empirical evidence that biotic interactions would not constrain species distributions at macroecological scales. We examine this idea, for the first time, and provide tests for two null hypotheses: (H0 1) – biotic interactions do not exert a significant role in explaining current distributions of a particular species of butterfly (clouded Apollo, Parnassius mnemosyne) in Europe; and (H0 2) – biotic interactions do not exert a significant role in predictions of altered species’ ranges under climate change.

Location  Europe.

Methods  Generalized additive modelling (GAM) was used to investigate relationships between species and climate; species and host plants; and species and climate + host plants. Because models are sensitive to the variable selection strategies utilised, four alternative approaches were used: AIC (Akaike's Information Criterion), BIC (Bayesian Information Criterion), BRUTO (Adaptive Backfitting), and CROSS (Cross Selection).

Results  In spite of the variation in the variables selected with different methods, both hypotheses (H0 1 and H0 2) were falsified, providing support for the proposition that biotic interactions significantly affect both the explanatory and predictive power of bioclimatic envelope models at macro scales.

Main conclusions  Our results contradict the widely held view that the effects of biotic interactions on individual species distributions are not discernible at macroecological scales. Results are contingent on the species, type of interaction and methods considered, but they call for more stringent evidence in support of the idea that purely climate-based modelling would be sufficient to quantify the impacts of climate change on species distributions.