Get access

Threshold response of Madagascar's littoral forest to sea-level rise

Authors

  • Malika Virah-Sawmy,

    Corresponding author
    1. Oxford Long-term Ecology Laboratory, Oxford University Centre for the Environment, South Parks Road, Oxford OX1 3QY, UK,
    Search for more papers by this author
  • Katherine J. Willis,

    1. Oxford Long-term Ecology Laboratory, Oxford University Centre for the Environment, South Parks Road, Oxford OX1 3QY, UK,
    2. Department of Biology, University of Bergen, N-5007, Bergen. Norway
    Search for more papers by this author
  • Lindsey Gillson

    1. Plant Conservation Unit, University of Cape Town, Rondebosch 7701, South Africa,
    Search for more papers by this author

*Correspondence: Malika Virah-Sawmy, Oxford Long-term Ecology Laboratory, Oxford University Centre for the Environment, South Parks Road, Oxford OX1 3QY, UK. E-mail: malika.virahsawmy@ouce.ox.ac.uk

ABSTRACT

Aim  Coastal biodiversity hotspots are globally threatened by sea-level rise. As such it is important to understand how ecosystems resist, respond and adapt to sea-level rise. Using pollen, geochemistry, charcoal and diatom records in conjunction with previously published palaeoclimatic records, we investigated the mechanism, interactions and ecosystem response and resilience of Madagascar's littoral forest to late Holocene sea-level rise.

Location  Sediment sequences were collected along the south-east coast of Madagascar in two adjacent habitats in Mandena; the highly diverse littoral forest fragment and species-poor Erica-matrix.

Methods  We used a multi-proxy approach to investigate the relative influence of environmental changes on the littoral ecosystem. We reconstructed past vegetation and fire dynamics over the past 6500 years at two sites in the littoral forest using fossil pollen and macrofossil charcoal contained in sedimentary sequences. Alongside these records we reconstructed past marine transgressions from the same sedimentary sequences using geochemical analyses, and a salinity and drought index through the analysis of fossil diatoms.

Results  Our findings indicated that it was the synergistic effect of sea-level rise coupled with rainfall deficits that triggered a threshold event with a switch from two types of littoral forest (an open Uapaca forest and a closed littoral forest fragment) to an Erica–Myrica heath/grassland occurring in approximately less than 100 years. Resilience to sea-level rise differed in the two adjacent habitats, suggesting that the littoral forest fragment was more resilient to the impacts of sea-level change and aridity than the open Uapaca woodland.

Conclusions  We demonstrated that the littoral ecosystem was influenced by late Holocene sea-level rise and climatic desiccation. While climate change-integrated conservation strategies address the effects of climate change on species distribution and dispersal, our work suggests that more attention should be paid to the impacts of interactive climatic variables that affect ecosystem thresholds.

Ancillary