Get access

Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems

Authors

  • Martín F. Garbulsky,

    Corresponding author
    1. Unitat d'Ecofisiologia i Canvi Global – CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecològica i Aplicacions Forestals), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain,
    2. Faculty of Agronomy, University of Buenos Aires, C1417DSE, Buenos Aires, Argentina,
    Search for more papers by this author
  • Josep Peñuelas,

    1. Unitat d'Ecofisiologia i Canvi Global – CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecològica i Aplicacions Forestals), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain,
    Search for more papers by this author
  • Dario Papale,

    1. Department of Forest Environment and Resources, University of Tuscia, 01100 Viterbo, Italy,
    Search for more papers by this author
  • Jonas Ardö,

    1. Department of Physical Geography and Ecosystems Analysis, Lund University, Lund, Sweden,
    Search for more papers by this author
  • Michael L. Goulden,

    1. Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA,
    Search for more papers by this author
  • Gerard Kiely,

    1. Centre for Hydrology, Meteorology and Climate Change, Civil and Environmental Engineering Department, University College Cork, Ireland,
    Search for more papers by this author
  • Andrew D. Richardson,

    1. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA,
    Search for more papers by this author
  • Eyal Rotenberg,

    1. Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot 76100, Israel,
    Search for more papers by this author
  • Elmar M. Veenendaal,

    1. Nature Conservation and Plant Ecology Group, Wageningen University, 6708 PD Wageningen, The Netherlands
    Search for more papers by this author
  • Iolanda Filella

    1. Unitat d'Ecofisiologia i Canvi Global – CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecològica i Aplicacions Forestals), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain,
    Search for more papers by this author

Martín F. Garbulsky, CREAF, Edifici C – Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain.
E-mail: martin@creaf.uab.cat

ABSTRACT

Aim  The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial variability of GPP and the spatial and temporal variability of RUE and its climatic controls for a wide range of vegetation types.

Location  A global range of sites from tundra to rain forest.

Methods  We analysed a global dataset on photosynthetic uptake and climatic variables from 35 eddy covariance (EC) flux sites spanning between 100 and 2200 mm mean annual rainfall and between −13 and 26°C mean annual temperature. RUE was calculated from the data provided by EC flux sites and remote sensing (MODIS).

Results  Rainfall and actual evapotranspiration (AET) positively influenced the spatial variation of annual GPP, whereas temperature only influenced the GPP of forests. Annual and maximum RUE were also positively controlled primarily by annual rainfall. The main control parameters of the growth season variation of gross RUE varied for each ecosystem type. Overall, the ratio between actual and potential evapotranspiration and a surrogate for the energy balance explained a greater proportion of the seasonal variation of RUE than the vapour pressure deficit (VPD), AET and precipitation. Temperature was important for determining the intra-annual variability of the RUE at the coldest energy-limited sites.

Main conclusions  Our analysis supports the idea that the annual functioning of vegetation that is adapted to its local environment is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. The intra-annual variation of RUE was mainly linked to the energy balance and water availability along the climatic gradient. Furthermore, we showed that intra-annual variation of gross RUE is only weakly influenced by VPD and temperature, contrary to what is frequently assumed. Our results provide a better understanding of the spatial and temporal controls of the RUE and thus could lead to a better estimation of ecosystem carbon fixation and better modelling.

Ancillary