• 1
    Agorastos, T., Hollweg, G., Grussendorf, E.I. and Papaloucas, A. Features of vernix caseosa cells. Am. J. Perinatol. 5, 253259 (1988).
  • 2
    Pickens, W.L., Warner, R.R., Boissy, Y.L., Boissy, R.E. and Hoath, S.B. Characterization of vernix caseosa: water content, morphology, and elemental analysis. J. Invest. Dermatol. 115, 875881 (2000).
  • 3
    Rissmann, R., Groenink, W., Weerheim, A. et al. New insights into ultrastructure, lipid composition and organization of vernix caseosa. J. Invest. Dermatol. (in press) (2006).
  • 4
    Pickens, W., Warner, R., Boissy, R. and Sb, H. Characterization of human vernix: water content morphology and elemental analysis. J. Invest. Dermatol. 115, 875881 (2000).
  • 5
    Hoath, S.B., Pickens, W.L., Scarborough, T.E., Kasting, G.B. and Visscher, M.O. Characterization of Vernix Caseosa: Relevance to Stratum Corneum. Stratum Corneum IV, Paris, 2004.
  • 6
    Stewart, M.E., Quinn, M.A. and Downing, D.T. Variability in the fatty acid composition of wax esters from vernix caseosa and its possible relation to sebaceous gland activity. J. Invest. Dermatol. 78, 291295 (1982).
  • 7
    Nicolaides, N., Fu, H.C., Ansari, M.N. and Rice, G.R. The fatty acids of wax esters and sterol esters from vernix caseosa and from human skin surface lipid. Lipids 7(8), 506517 (1972).
  • 8
    Nicolaides, N. and Apon, J.M. Further studies of the saturated methyl branched fatty acids of vernix caseosa lipid. Lipids 11, 781790 (1976).
  • 9
    Nicolaides, N. The structures of the branched fatty acids in the wax esters of vernix caseosa. Lipids 6, 901905 (1971).
  • 10
    Hoeger, P.H., Schreiner, V., Klaassen, I.A. et al. Epidermal barrier lipids in human vernix caseosa: corresponding ceramide pattern in vernix and fetal skin. Br. J. Dermatol. 146, 194201 (2002).
  • 11
    Okah, F., Wickett, R., Pompa, K. and Hoath, S. Human newborn skin: the effect of isopropanol on skin surface hydrophobicity. Pediatr. Res. 35, 443446 (1994).
  • 12
    Wickett, R., Mutschelknaus, J. and Hoath, S. Ontogeny of water sorption-desorption in the perinatal rat. J. Invest. Dermatol. 100, 407411 (1993).
  • 13
    Harris, I. and Hoppe U. Lanolins. In: Dry Skin and Moisturizers: Chemistry and Function Dermatology (Loden, M., Maibach, H., eds), pp. 259267. CRC Press, New York (2000).
  • 14
    Hardman, M.J., Moore, L., Ferguson, M.W. and Byrne, C. Barrier formation in the human fetus is patterned. J. Invest. Dermatol. 113, 11061113. (1999).
  • 15
    Hasimoto, K., Gross, B., DiBella, R. and Lever, W. The ultrastructure of the skin of human embryos. IV. The epidermis. J. Invest. Dermatol. 47, 317335 (1966).
  • 16
    Holbrook, K.A. Structural and biochemical organogenesis of skin and cutaneous appendages in the fetus and newborn. In: Fetal and Neonatal Physiology (Polin, R.A., Fox, W.W., eds), W.B. Saunders Co., Philadelphia, PA, (1998).
  • 17
    Zouboulis C., Fimmel S., Ortmann J., Turnbull J. and Boschnakow A. Sebaceous Glands. In: Neonatal Skin: Structure and Function, 2nd edn. (HoathS.B., MaibachH., eds), pp. 5988. Marcel Dekker, New York, (2003).
  • 18
    Sumida Y., Yakumaru M., Tokitsu Y. et al. Studies on the Function of Vernix Caseosa: The Secrecy of Baby's Skin, pp. 17. International Federation of the Societies of Cosmetic Chemists 20th International Conference, Cannes, France, (1998).
  • 19
    Akinbi, H.T., Narendran, V., Pass, A.K., Markart, P. and Hoath, S.B. Host defense proteins in vernix caseosa and amniotic fluid. Am. J. Obstet. Gynecol. 191, 20902096 (2004).
  • 20
    Marchini, G., Lindow, S., Brismar, H. et al. The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. Br. J. Dermatol. 147, 11271134 (2002).
  • 21
    Tollin, M., Bergsson, G., Kai-Larsen, Y. et al. Vernix caseosa as a multi-component defence system based on polypeptides, lipids and their interactions. Cell Mol. Life Sci. 62, 23902399 (2005).
  • 22
    Yoshio, H., Lagercrantz, H., Gudmundsson, G.H. and Agerberth, B. First line of defense in early human life. Semin. Perinatol. 28, 304311 (2004).
  • 23
    Yoshio, H., Tollin, M., Gudmundsson, G.H. et al. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr. Res. 53, 211216 (2003).
  • 24
    Baker, S.M., Balo, N.N. and Abdel Aziz, F.T. Is vernix caseosa a protective material to the newborn? A biochemical approach. Indian J. Pediatr. 62, 237239 (1995).
  • 25
    Narendran, V., Wickett, R.R., Pickens, W.L. and Hoath, S.B. Interaction between pulmonary surfactant and vernix: a potential mechanism for induction of amniotic fluid turbidity. Pediatr. Res. 48, 120124 (2000).
  • 26
    Buchman, A.L. Glutamine: is it conditionally required nutrient for the human gastrointestinal system? J. Am. Coll. Nutr. 15, 199205, (1996).
  • 27
    Utturkar R.S. Vernix Caseosa: a source of natural moisturizing factors and its possible role in neonatal infant skin hydration. In: College of Pharmacy. Cincinnati, OH, University of Cincinnati, (2005).
  • 28
    Gunt H.B. Water Handling Properties of Vernix Caseosa. In: College of Pharmacy. Cincinnati, OH, University of Cincinnati, (2002).
  • 29
    Albuquerque, C.A., Nijland, M.J. and Ross, M.G. Human and ovine amniotic fluid composition differences: implications for fluid dynamics. J. Matern Fetal Med. 8, 123129 (1999).
  • 30
    Hoath, S.B. Physiologic development of the skin. In Polin, R.A., Fox, W.W., Abman, S (eds) Fetal and Neonatal Physiology. Amsterdam: Elsevier Saunders (2003).
  • 31
    Hoath, S.B. and Leahy, D.G. The organization of human epidermis: functional epidermal units and phi proportionality. J. Invest. Dermatol. 121, 14401446 (2003).
  • 32
    Hoath, S.B. and Leahy, D.G. The human stratum corneum as extended, covalently cross-linked biopolymer: mathematics, molecules, and medicine. Med. Hypotheses. 10, 10 (2006).
  • 33
    Livio, M. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number. New York: Broadway Books (2002).
  • 34
    Adair, C.D., Sanchez-Ramos, L., McDyer, D.L. et al. Predicting fetal lung maturity by visual assessment of amniotic fluid turbidity: comparison with fluorescence polarization assay. South. Med. J. 88, 10311033 (1995).
  • 35
    Agorastos, T., Lamberti, G., Vlassis, G., Zournatzi, B. and Papaloucas, A. Methods of prenatal determination of fetal maturity based on differentiation of the fetal skin during the last weeks of pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 22, 2940 (1986).
  • 36
    Youssef, W., Wickett, R.R. and Hoath, S.B. Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant. Skin Res. Technol. 7, 1017 (2001).
  • 37
    Mavon, A., Zahouani, H., Redoules, D. et al. Sebum and stratum corneum lipids increase human skin surface free energy as determined from contact angle measurements: a study on two anatomical sites. Colloids Surfaces B Biointerfaces 8, 147155 (1997).
  • 38
    Riesenfeld B., Stromberg B. and Sedin G. The influence of vernix caseosa on water transport through semipermeable membranes and the skin of full-term infants. Neonatal Physiological Measurements: Proceedings of the Second International Conference on Fetal and Neonatal Physiological Measurements 1984, pp. 36.
  • 39
    Hammarlund, K. and Sedin, G. Transepidermal water loss in newborn infants. III. Relation to gestational age. Acta Paediatr. Scand. 68, 795801 (1979).
  • 40
    Visscher, M., Hoath, S., Conroy, E. and Wickett, R. Effect of semipermeable membranes on skin barrier repair following tape stripping. Arch. Dermatol. Res. 293, 491499 (2001).
  • 41
    Tansirikongkol A. Characterization of Vernix Caseosa. College of Pharmacy. Cincinnati, OH, University of Cincinnati (2006).
  • 42
    Supp, A., Wickett, R., Swope, V. et al. Incubation of cultured skin substitutes in reduced humidity promotes cornification in vitro and stable engraftment in athymic mice. Wound Repair Regener. 7, 226237 (1999).
  • 43
    Haringer, M. and Hull, B. Cornification and basement membrane formation in a bilayered human skin equivalent maintained at an air–liquid interface. J. Burn Care Rehabil. 13, 187193 (1992).
  • 44
    Ito, N., Ito, T., Kromminga, A. et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB. J. 19, 13321334 (2005).
  • 45
    Wakai, R.T., Lengle, J.M. and Leuthold, A.C. Transmission of electric and magnetic foetal cardiac signals in a case of ectopia cordis: the dominant role of the vernix caseosa. Phys. Med. Biol. 45, 19891995 (2000).
  • 46
    Denda, M., Sato, J., Tsuchiya, T., Elias, P. and Feingold, K. Low humidity stimulates epidermal DNA synthesis and amplifies the hyperproliferative response to barrier disruption: implication for seasonal exacerbations of inflammatory dermatoses. J. Invest. Dermatol. 111, 873878 (1998).
  • 47
    Proksch, E., Holleran, W., Menon, G., Elias, P. and Feingold, K. Barrier function regulates epidermal lipid and DNA synthesis. Br. J. Dermatol. 128, 473482 (1993).
  • 48
    Barai N. Effect of Vernix Caseosa on Epidermal Barrier Development/Repair: Implications in Wound Healing. College of Pharmacy. Cincinnati, OH, University of Cincinnati (2005).
  • 49
    Varner, M.W., Dildy, G.A., Hunter, C. et al. Amniotic fluid epidermal growth factor levels in normal and abnormal pregnancies. J. Soc. Gynecol. Investig. 3, 1719 (1996).
  • 50
    LeVine, A.M. and Whitsett, J.A. Pulmonary collectins and innate host defense of the lung. Microbes Infect. 3, 161166 (2001).
  • 51
    Thiele, J. and Packer, L. Noninvasive measurement of alpha-tocopherol gradients in human stratum corneum by high-performance liquid chromatography analysis of sequential tape strippings. Meth. Enzymol. 300, 413419 (1999).
  • 52
    Thiele, J., Schroeter, C., Hsieh, S., Podda, M. and Packer, L. The antioxidant network of the stratum corneum. Curr. Probl. Dermatol. 29, 2642 (2001).
  • 53
    Visscher, M.O., Narendran, V., Pickens, W.L. et al. Vernix caseosa in neonatal adaptation. J. Perinatol. 25, 440446 (2005).
  • 54
    Saunders, C. The vernix caseosa and subnormal temperature in premature infants. Br. J. Obstet. Gynaecol. 55, 442444 (1948).
  • 55
    Rawlings, A.V., Watkinson, A. and Rogers, J. Abnormalities in stratum corneum structure lipid composition and desmosome degradation in soap-induced winter xerosis. J. Soc. Cosmet. Chem. 45, 203220 (1994).
  • 56
    Scott, I. and Harding, C. Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Dev. Biol. (N. y. 1985) 115, 8492 (1986).
  • 57
    Saijo, S. and Tagami, H. Dry skin of newborn infants: functional analysis of the stratum corneum. Pediatr. Dermatol. 8, 155159 (1991).
  • 58
    Zhukov, B., Neverova, E. and Nikitin, K. A comparative evaluation of the use of vernix caseosa and solcoseryl in treating patients with trophic ulcers of the lower extremities. Vestnik Khirurgii Imeni I I Grekova 148, 339341 (1992).
  • 59
    Joglekar, V.M. Barrier properties of vernix caseosa. Arch. Dis. Child. 55, 817819 (1980).
  • 60
    Kitzmiller, J.L., Highby, S. and Lucas, W.E. Retarded growth of E coli in amniotic fluid. Obstet. Gynecol. 41, 3842 (1973).
  • 61
    Edwards, W.H., Conner, J.M. and Soll, R.F. The effect of Aquaphor® original emollient ointment on nosocomial sepsis rates and skin integrity in infants of birth weight 501 to 1000 grams. Pediatr. Res. 49, 388A (2001).
  • 62
    Darmstadt, G.L., Badrawi, N., Law, P.A. et al. Topically applied sunflower seed oil prevents invasive bacterial infections in preterm infants in Egypt: a randomized, controlled clinical trial. Pediatr. Infect. Dis. J. 23, 719725 (2004).
  • 63
    Darmstadt, G.L., Saha, S.K., Ahmed, A.S. et al. Effect of topical treatment with skin barrier-enhancing emollients on nosocomial infections in preterm infants in Bangladesh: a randomised controlled trial. Lancet 365, 10391045 (2005).
  • 64
    Moraille, R., Pickens, W.L., Visscher, M.O. and Hoath, S.B. A novel role for vernix caseosa as a skin cleanser. Biol. Neonate. 87, 814 Epub August 2004, 2027 (2005).
  • 65
    Hoath, S. and Narendran, V. Role and biology of vernix. Neonatal Infant Nurs. Rev. (NINR) 1, 5358 (2001).
  • 66
    Thiele, J., Weber, S. and Packer, L. Sebaceous gland secretion is a major physiologic route of vitamin E delivery to skin. J. Invest. Dermatol. 113, 10061010 (1999).
  • 67
    Bautista, M.I., Wickett, R.R., Visscher, M.O., Pickens, W.L. and Hoath, S.B. Characterization of vernix caseosa as a natural biofilm: comparison to standard oil-based ointments. Pediatr. Dermatol. 17, 253260 (2000).