Get access

A metapopulation perspective for salmon and other anadromous fish

Authors

  • Nicolas Schtickzelle,

    1. Biodiversity Research Centre, Université Catholique de Louvain, 4 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
    2. School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195-5020, USA
    Search for more papers by this author
  • Thomas P. Quinn

    1. School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195-5020, USA
    Search for more papers by this author

Nicolas Schtickzelle, Biodiversity Research Centre, Université catholique de Louvain, 4 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
Tel.: +32 10 47 20 52
Fax: +32 10 47 34 90
E-mail: nicolas.schtickzelle@uclouvain.be

Abstract

Salmonids are an important component of biodiversity, culture and economy in several regions, particularly the North Pacific Rim. Given this importance, they have been intensively studied for about a century, and the pioneering scientists recognized the critical link between population structure and conservation. Spatial structure is indeed of prime importance for salmon conservation and management. At first glance, the essence of the metapopulation concept, i.e. a population of populations, widely used on other organisms like butterflies, seems to be particularly relevant to salmon, and more generally to anadromous fish. Nevertheless, the concept is rarely used, and barely tested.

Here, we present a metapopulation perspective for anadromous fish, assessing in terms of processes rather than of patterns the set of necessary conditions for metapopulation dynamics to exist. Salmon, and particularly sockeye salmon in Alaska, are used as an illustrative case study. A review of life history traits indicates that the three basic conditions are likely to be fulfilled by anadromous salmon: (i) the spawning habitat is discrete and populations are spatially separated by unsuitable habitat; (ii) some asynchrony is present in the dynamics of more or less distant populations and (iii) dispersal links populations because some salmon stray from their natal population. The implications of some peculiarities of salmon life history traits, unusual in classical metapopulations, are also discussed.

Deeper understanding of the population structure of anadromous fish will be advanced by future studies on specific topics: (i) criteria must be defined for the delineation of suitable habitats that are based on features of the biotope and not on the presence of fish; (ii) the collection of long-term data and the development of improved methods to determine age structure are essential for correctly estimating levels of asynchrony between populations and (iii) several key aspects of dispersal are still poorly understood and need to be examined in detail: the spatial and temporal scales of dispersal movements, the origin and destination populations instead of simple straying rates, and the relative reproductive success of immigrants and residents.

Get access to the full text of this article

Ancillary