SEARCH

SEARCH BY CITATION

REFERENCES

  • Abowd, J. M., Kramarz, F. and Margolis, D. N. (1999). ‘High wage workers and high wage firms. Econometrica, 67, 251333.
  • Abowd, J. M., Haltiwanger, J. and Lane, J. (2004). ‘Integrated longitudinal employer-employee data for the United States. The American Economic Review, 94, 2249.
  • Agarwal, R., Sarkar, M. B. and Echambadi, R. (2002). ‘The conditioning effect of time on firm survival: an industry life cycle approach. Academy of Management Journal, 45, 97194.
  • Ai, C. and Norton, E. C. (2003). ‘Interaction terms in logit and probit models. Economics Letters, 80, 1239.
  • Aiken, L. S. and West, S. G. (1991). Multiple Regression: Testing and Interpreting Interactions. Newbury Park, CA: Sage.
  • Allison, P. D. (2005). Fixed Effects Regression Methods for Longitudinal Data Using SAS. Cary, NC: SAS Institute.
  • Amemiya, T. (1985). Advanced Econometrics. Boston, MA: Harvard University Press.
  • Ashenfelter, O. and Card, D. (1985). ‘Using the longitudinal structure of earnings to estimate the effect of training programs. Review of Economics and Statistics, 67, 64860.
  • Ballinger, G. A. (2004). ‘Using generalized estimating equations for longitudinal data analysis. Organizational Research Methods, 7, 12750.
  • Barclay, D., Higgins, C. and Thompson, R. (1995). ‘The partial least squares (PLS) approach to causal modeling: personal computer adoption and use as an illustration. Technology Studies, 2, 285324.
  • Berg, G. D. and Mansley E. C. (2004). ‘Endogeneity bias in the absence of unobserved heterogeneity. Annals of Epidemiology, 14, 5615.
  • Blalock, H. M. (1964). Causal Inferences in Nonexperimental Research. Chapel Hill, NC: University of North Carolina Press.
  • Boland, R. J. Jr, Singh, J., Salipante, P., Aram, J. D., Fay, S. Y. and Kanawattanachai, P. (2001). ‘Knowledge representations and knowledge transfer. Academy of Management Journal, 44, 393417.
  • Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: Wiley.
  • Bollen, K. A. (1996) ‘An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 10921.
  • Bowen, H. and Wiersema, M. (2005). ‘Foreign-based competition and corporate diversification strategy. Strategic Management Journal, 26, 115371.
  • Boyd, B. K., Gove, S. and Hitt, M. A. (2005a). ‘Consequences of measurement problems in strategic management research: the case of Amihud and Lev. Strategic Management Journal, 26, 36775.
  • Boyd, B. K., Gove, S. and Hitt, M. A. (2005b). ‘Construct measurement in strategic management research: illusion or reality? Strategic Management Journal, 26, 23957.
  • Bryk, A. S. and Raudenbush, S. W. (1992). Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park, CA: Sage.
  • Burgess, S., Lane, J. and Stevens, D. (2000). ‘Job flows, worker flows, and churning. Journal of Labor Economics, 18, 473502.
  • Campbell, B. A. (2005). ‘Using linked employer-employee data to study entrepreneurial issues’. In Alvarez, S. A., Agarwal, R. and Sorenson, O. (Eds), Handbook of Entrepreneurship Research: Disciplinary Perspectives. New York: Springer.
  • Campbell, B. A. (2006). ‘Entrepreneurial Risk and Return’. Working Paper. Center for Human Resources, The Wharton School, University of Pennsylvania.
  • Card, D. and Lemieux, T. (1996). ‘Wage dispersion, returns to skill, and black-white wage differentials. Journal of Econometrics, 74, 31961.
  • Chandy, R., Golder, P. and Tellis, G. (2004). ‘Historical research in marketing strategy: method, myths, and promise’. In Moorman, C. and Lehmann, D. (Eds), Cools Tools for Assessing Marketing Strategy Performance. Boston, MA: Marketing Science Institute.
  • Chay, K. Y., McEwan, P. J. and Urquiola, M. (2005). ‘The central role of noise in evaluating interventions that use test scores to rank schools. American Economic Review, 95, 123758.
  • Chin, W. W. (1998). ‘Issues and opinion on structural equation modeling. MIS Quarterly, 22, 716.
  • Chin, W. W. and Newsted, P. R. (1999). ‘Structural equation modeling analysis with small samples using partial least squares’. In Hoyle, R. (Ed.), Statistical Strategies for Small Sample Research. Thousand Oaks, CA: Sage, 30741.
  • Chin, W. W., Marcolin, B. L. and Newsted, P. R. (2003). ‘A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14, 189217.
  • Christensen, C. M. (2006). ‘The ongoing process of building a theory of disruption. The Journal of Product Innovation Management, 23, 3955.
  • Churchill, G. A. Jr (1979). ‘A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16, 6473.
  • Cohen, J. (1990). ‘Things I have learned (so far). American Psychologist, 12, 130412.
  • Cook, T. D. and Campbell, D. T. (1979). Quasi-Experimentation: Design and Analysis for Field Settings. Boston, MA: Houghton Mifflin Company.
  • Cortina, J. M., Chen, G. and Dunlap, W. P. (2001). ‘Testing interaction effects in LISREL: examination and illustration of available procedures. Organizational Research Methods, 4, 32460.
  • Dehejia, R. and Wahba, S. (2002). ‘Propensity score matching methods for non-experimental causal studies. Review of Economics and Statistics, 84, 15161.
  • Dekimpe, M. G. and Hanssens, D. M. (1995). ‘Empirical generalizations about market evolution and stationarity. Marketing Science, 14, G109–21.
  • Dekimpe, M. G. and Hanssens, D. M. (1999). ‘Sustained spending and persistent response: a new look at long-term marketing profitability. Journal of Marketing Research, 36, 397412.
  • Diamantopoulos, A. and Winklhofer, H. M. (2001). ‘Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38, 26977.
  • Echambadi, R. and Hess, J. D. (2007). ‘Mean-centering does not alleviate collinearity problems in moderated multiple regression models. Marketing Science, forthcoming.
  • Echambadi, R., Arroniz, I., Reinartz, W. and Lee, J. (2006a). ‘Empirical generalizations from brand extension research: how sure are we?. International Journal of Research in Marketing, 23, 25361.
  • Echambadi, R., Sarkar, M. B., Agarwal, R. and Arroniz, I. (2006b). ‘Entry Timing and Firm Survival: The Moderating Effects of Firm Size and Pace of Technological Change’. University of Central Florida, Working Paper.
  • Farrell, A. D. (1994). ‘Structural equation modeling with longitudinal data: strategies for examining group differences and reciprocal relationships. Journal of Consulting and Clinical Psychology, 62, 47787.
  • Fornell, C. and Larcker, D. F. (1981). ‘Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 3950.
  • Fuller, W. A. and Hidiroglou, M. A. (1978). ‘Regression estimation after correcting for attenuation. Journal of the American Statistical Association, 73, 99104.
  • Goldberger, A. (1991). A Course in Econometrics. Cambridge, MA: Harvard University Press.
  • Golder, P. N. (2000). ‘Historical method in marketing research with new evidence on long-term market share stability. Journal of Marketing Research, 37, 15672.
  • Golder, P. N. and Tellis, G. J. (1993). ‘Pioneer advantage: marketing logic or marketing legend?. Journal of Marketing Research, 30, 15870.
  • Granger, C. W. J. (1969). ‘Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 42438.
  • Granger, C. W. J. (2003). ‘Evaluation of theories and models’. In Stigum, B. (Ed.), Econometrics and the Philosophy of Economics. Princeton, NJ: Princeton University Press.
  • Greene, W. H. (1997). Econometric Analysis. Upper Saddle River, NJ: Prentice Hall.
  • Hall, B. H. and Ziedonis, R. H. (2001). ‘The patent paradox revisited: an empirical study of patenting in the U.S. semiconductor industry, 1979–1995. The Rand Journal of Economics, 32, 10128.
  • Hamilton, J. D. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press.
  • Harris, R., Siegel, D. and Wright, M. (2005). ‘Assessing the impact of management buyouts on economic efficiency: plant-level evidence from the United Kingdom. The Review of Economics and Statistics, 87,14853.
  • Hausman, J. (1978). ‘Specification tests in econometrics. Econometrica, 46, 125172.
  • Heckman, J. (1979). ‘Sample selection bias as a specification error. Econometrica, 47, 15361.
  • Hedeker, D. and Gibbons, R. D. (2006). Longitudinal Data Analysis. New York: John Wiley and Sons.
  • Hoetker, G. (2007). ‘The use of logit and probit models in strategic management research: critical issues. Strategic Management Journal, forthcoming.
  • Hofmann, D. A. (1997). ‘An overview of the logic and rationale of hierarchical linear models. Journal of Management, 23, 72344.
  • Hofmann, D. A. and Gavin, M. B. (1998). ‘Centering decisions in hierarchical linear models: implications for research in organizations. Journal of Management, 24, 62341.
  • Hu, F. B., Goldberg, J., Hedeker, D., Flay, B. R. and Pentz, M. A. (1998). ‘Comparison of population-averaged and subject-specific approaches for analyzing repeated binary outcomes. American Journal of Epidemiology, 147, 694703.
  • Hulland, J. (1999). ‘Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20, 195204.
  • Irwin, J. R. and McClelland, G. H. (2001). ‘Misleading heuristics and moderated multiple regression models. Journal of Marketing Research, 38, 1009.
  • Irwin, J. R. and McClelland, G. H. (2003). ‘Negative consequences of dichotomizing continuous predictor variables. Journal of Marketing Research, 40, 36671.
  • Jarvis, C. B., MacKenzie, S. B. and Podsakoff, P. M. (2003). ‘A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30, 199218.
  • Kerlinger, F. N. (1973). Foundations of Behavioral Research, 2nd edition. New York: Holt, Rinehart and Winston.
  • Klepper, S. and Sleeper, S. (2005) ‘Entry by spinoffs. Management Science, 51, 12912007.
  • Lance, C. E. (1988). ‘Residual centering, exploratory and confirmatory moderator analysis, and decomposition of effects in path models containing interactions. Applied Psychological Measurement, 12, 16375.
  • Larcker, D. and Rusticus, T. (2005). ‘On the Use of Instrumental Variables in Accounting Research’. Working Paper, Graduate School of Business, Stanford University.
  • Lehmann, D. (2003). The Relevance of Rigor. Report No. 03-105. Cambridge, MA: Marketing Science Institute.
  • Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables. Advanced Quantitative Techniques in the Social Sciences. Thousand Oaks, CA: Sage.
  • MacCallum, R. C. and Browne, M. W. (1993). ‘The use of causal indicators in covariance structure models: some practical issues. Psychological Bulletin, 114, 53341.
  • MacKenzie, S. B. (2001). ‘Opportunities for improving consumer research through latent variable structural equation modeling. Journal of Consumer Research, 28, 15966.
  • MacKenzie, S. B. (2003). ‘The dangers of poor construct conceptualization. Academy of Marketing Science Journal, 31, 3236.
  • Marcoulides, G. A. and Saunders, C. (2006). ‘PLS: a silver bullet. MIS Quarterly, 30, 17.
  • Mason, C. H. and Perreault, W. D. Jr (1991). ‘Collinearity, power, and interpretation of multiple regression analysis. Journal of Marketing Research, 28, 26880.
  • Meehl, P. E. (1990). ‘Why summaries of research on psychological theories are often uninterpretable. Psychological Reports, 66, 195244.
  • Mela, C. F. and Kopalle, P. (2002). ‘The impact of collinearity on regression analysis: the asymmetric effect of negative and positive correlations. Applied Economics, 34, 65777.
  • Mitchell, T. R., Holtom, B. C., Lee, T. W., Sablynski, C. J. and Erez, M. (2001). ‘Why people stay: using job embeddedness to predict voluntary turnover. Academy of Management Journal, 44, 110221.
  • Nunnally, J. C. and Bernstein, I. H. (1994). Psychometric Theory, 3rd edition. New York: McGraw-Hill.
  • Ofir, C. and Khuri, A. (1986). ‘Multicollinearity in marketing models: diagnostics and remedial measures. International Journal of Research in Marketing, 3, 181205.
  • Rynes, S. (2005). ‘Taking stock and looking ahead. Academy of Management Journal, 48, 915.
  • Sarkar, M. B., Echambadi, R. and Harrison, J. S. (2001). ‘Alliance entrepreneurship and firm market performance. Strategic Management Journal, 22, 70111.
  • Shah, S. and Corley, K. (2006). ‘Building better theory by bridging the quantitative-qualitative divide. Journal of Management Studies, 43, 182337.
  • Shook, C. L., Ketchen, D. J. Jr, Hult, G. T. M. and Kacmar, K. M. (2004). ‘An assessment of the use of structural equation modeling in strategic management research. Strategic Management Journal, 25, 397404.
  • Siegel, D. and Simons, K. (2006). ‘Assessing the Effects of Mergers and Acquisitions on Firm Performance, Plant Productivity and Workers: New Evidence from Matched Employer-Employee Data’. Rensselaer Working Paper in Economics #0601.
  • Sivo, S. A., Fan, X. and Witta, L. (2005). ‘The biasing effects of unmodeled ARMA time series processes growth curve model estimates. Structural Equation Modeling: A Multidisciplinary Journal, 12, 21531.
  • Sivo, S. A., Echambadi, R. and Arroniz, I. (2006). ‘Incorporating Time Series Processes in Structural Equation Models’. Working Paper, University of Central Florida.
  • Spector, P. E. (1997). Job Satisfaction. Thousand Oaks, CA: Sage.
  • Stock, J. and Yogo, M. (2002). ‘Testing for weak instruments in linear IV regression’. In Andrews, D. W. K. and Stock, J. (Eds), Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg. Cambridge: Cambridge University Press, 80108.
  • Stock J., Wright, J. and Yogo, M. (2002). ‘A survey of weak instruments and weak identification in generalized method of moments. Journal of Business and Economic Statistics, 20, 51829.
  • Wooldridge, J. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: The MIT Press.
  • Zeger, S. L., Liang, K. Y. and Albert, P. A. (1988). ‘Models for longitudinal data: a generalized estimating equation approach. Biometrics, 44, 104960.
  • Zohoori, N. and Savitz, D. A. (1997). ‘Econometric approaches to epidemiologic data: relating endogeneity and unobserved heterogeneity to confounding. Annals of Epidemiology, 7, 2517.