SEARCH

SEARCH BY CITATION

References

  • Amir, R. and Galili, G. (2003) Approaches to improve the nutritional values of transgenic plants by increasing their methionine content. In: Advances in Plant Physiology 6 (Hemantaranjan, A., ed.), pp. 6177. Jodhpur: Scientific Publishers.
  • Anderson, M. (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548555.
  • Bagga, S., Armendaris, A., Klypina, N., Ray, I., Ghoshroy, S., Endress, M., Sutton, D., Kemp, J.D. and Sengupta-Gopalan, C. (2004) Genetic engineering ruminal stable high methionine protein in the foliage of alfalfa. Plant Sci. 166, 273283.
  • Barnes, D.K. (1988) Alfalfa and alfalfa improvements. In: Highlights in USA and Canada (Hanson, D.K., Barnes, D.K. and Hill, R.R., eds), pp. 2345. Madison, WI: ASA, CSSA and SSA.
  • Chiba, Y., Ishikawa, M., Kijima, F., Tyson, R.H., Kim, J., Yamamoto, A., Nambara, E., Leustek, T., Wallsgrove, R.M. and Naito, S. (1999) Evidence for autoregulation of cystathionine gamma-synthase mRNA stability in Arabidopsis. Science, 286, 13711374.
  • Chiba, Y., Sakurai, R., Yoshino, M., Ominato, K., Ishikawa, M., Onouchi H. and Naito, S. (2003) S-adenosyl-l-methionine is an effector in the posttranscriptional autoregulation of the cystathionine gamma-synthase gene in Arabidopsis. Proc. Natl. Acad. Sci. USA, 100, 10 22510 230.
  • Christiansen, P., Gibson, J.M., Moore, A., Pedersen, C., Tabe, L. and Larkin, P.J. (2000) Transgenic Trifolium repens with foliage accumulating the high sulphur protein, sunflower seed albumin. Transgenic Res. 9, 103113.
  • Di, R., Kim, J., Martin, M.N., Leustek, T., Jhoo, J., Ho, C.T. and Tumer, N.E. (2003) Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine. J. Agric. Food Chem. 51, 56955702.
  • Ealing, P.M., Hancock, K.R. and White, D.W.R. (1994) Expression of the pea albumin 1 gene in transgenic white clover and tobacco. Transgenic Res. 3, 344354.
  • Fahey, R. and Newton, G.L. (1987) Determination of low-molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol. 143, 8596.
  • Falco, S.C., Guida, T. and Locke, M. (1995) Nucleic acid fragments, chimeric genes and methods for increasing the methionine content of seeds of plants. U.S. Patent no. WO 95/31554 13, 577582.
  • Frankard, V., Ghislain, M., Negrutiu, I. and Jacobs, M. (1991) High threonine producer mutant of Nicotiana sylvestris (Spegazzini & Comes). Theor. Appl. Genet. 82, 273282.
  • Galili, G., Galili, S., Lewinsohn, E. and Tadmor, Y. (2002) Genetic, molecular and genomic approaches to improve the value of plant foods and feeds. Crit. Rev. Plant Sci. 21, 167204.
  • Galili, S., Guenoune, D., Wilinger, S. and Kapulnic, Y. (2000) Enhanced levels of free and protein bound threonine in transgenic alfalfa (Medicago sativa L.) expressing a bacterial feed back insensitive aspartate kinase gene. Transgenic Res. 9, 137144.
  • Habben, J.E. and Larkins, B.A. (1995) Improving protein quality in seeds. In: Improving Protein Quality in Seeds (Kigel, J. and Galili, G., eds), pp. 791810. New York: Marcel Dekker, Inc.
  • Hacham, Y., Avraham, T. and Amir, R. (2002) The N-terminal region of Arabidopsis cystathionine gamma-synthase plays an important regulatory role in methionine metabolism. Plant Physiol. 128, 454462.
  • Hagan, N.D., Upadhyaya, N., Tabe, L.M. and Higgins, T.J. (2003) The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J. 34, 111.
  • Heremans, B. and Jacobs, M. (1997) A mutant of Arabidopsis thaliana (L.) Heynh. with modified control of aspartate kinase by threonine. Biochem. Genet. 35, 139153.
  • Hirai, M.Y., Fujiwara, T., Chino, M. and Naito, S. (1995) Effects of sulfate concentrations on the expression of a soybean seed storage protein gene and its reversibility in transgenic Arabidopsis thaliana. Plant Cell Physiol. 36, 13311339.
  • Jung, R. (1997) Expression of a 2S albumin from Bertholletia excelsain soybean. In: The 39th NIBB Conference: Dynamic Aspects of Seed Maturation and Germination. Okazaki: National Institute for Basic Biology. URL: http://pubs.nrc-cnrc.gc.ca/ispmb/isqmb15/15393-4.pdf
  • Jung, R., Martino-catt, S., Towsend, J. and Beach, L. (1997) Expression of a sulfur rich protein in soybean seeds causes an altered seed protein composition. In: 5th International Congress of Plant Molecular Biology. Singapore: Kluwer Academic.
  • Khan, M.R., Ceriotti, A., Tabe, L., Aryan, A., McNabb, W., Moore, A., Craig, S., Spencer, D. and Higgins, T.J. (1996) Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover (Trifolium subterraneum L.). Transgenic Res. 5, 179185.
  • Kim, J., Lee, M., Chalam, R., Martin, M., Leustek, T. and Boerjan, W. (2002) Constitutive overexpression of cystathionine γ-synthase in Arabidopsis thaliana leads to accumulation of soluble methionine and S-methylmethionine. Plant Physiol. 128, 95107.
  • Kreft, O., Hoefgen, R. and Hesse, H. (2003) Functional analysis of cystathionine gamma-synthase in genetically engineered potato plants. Plant Physiol. 131, 18431854.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680685.
  • Muntz, K. (1997) How does the seed's sulphur metabolism react on high level formation of foregin methionine rich proteins in transgenic narbon bean (Vicia Narbonensis L.)? In: The 39th NIBB Conference: Dynamic Aspects of Seed Maturation and Germination. Okazaki: National Institute for Basic Biology.
  • Naito, S., Hirai, M.Y., Chino, M. and Komeda, Y. (1994b) Expression of a soybean (Glycine max[L.] Merr.) seed storage protein gene in transgenic Arabidopsis thaliana and its response to nutritional stress and to abscisic acid mutations. Plant Physiol. 104, 497503.
  • Naito, S., Inaba-Higano, K., Kumagai, T., Kanno, T., Nambara, E., Fujiwara, T., Chino, M. and Komeda, Y. (1994a) Maternal effects of mto1 mutation, that causes overaccumulation of soluble methionine, on the expression of soybean beta-conglycinin gene promoter-GUS fusion in transgenic Arabidopsis thaliana. Plant Cell Physiol. 35, 10571063.
  • Pickering, F.S. and Reis, P.J. (1993) Effects of abomasal supplements of methionine on wool growth of grazing sheep. Aust. J. Exp. Agric. 33, 712.
  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbour Laboratory Press.
  • Schenk, R.U. and Hildebrandt, A.C. (1972) Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plants cell cultures. Can. J. Bot. 50, 199204.
  • Shaul, O. and Galili, G. (1992) Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J. 2, 203209.
  • Shewry, P.R. (2000) Seed proteins. In: Seed Technology and its Biological Basis (Black, M. and Bewley, J.D., eds), pp. 4284. Sheffield: Sheffield Academic Press.
  • Tabe, L. and Droux, M. (2001) Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol. 126, 176187.
  • Tabe, L. and Droux, M. (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol. 128, 11371148.
  • Tabe, L. and Higgins, T.J. (1998) Engineering plant protein composition for improved nutrition. Trends Plant Sci. 3, 282286.
  • Tabe, L., Wardley-Richardson, T., Ceriotti, A., Aryan, A., McNabb, W., Moore, A. and Higgins, T.J. (1995) A biotechnological approach to improving the nutritive value of alfalfa. J. Anim. Sci. 73, 27522759.
  • Tang, G., Zhu, X., Tang, X. and Galili, G. (2000) A novel composite locus of Arabidopsis encoding two polypeptides with metabolically related but distinct functions in lysine catabolism. Plant J. 23, 195203.
  • Wandelt, C.I., Rafiqul, M., Khan, I., Craig, S., Schroeder, H.E., Spencer, D. and Higgins, T.J. (1992) Vicilin with carboxy terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J. 2, 181192.
  • Xu, S., Harrison, J.H., Chalupa, W., Sniffen, C., Julien, W., Sato, H., Fujieda, T., Watanabe, K., Ueda, T. and Suzuki, H. (1998) The effect of ruminal bypass lysine and methionine on milk yield and composition of lactating cows. Dairy Sci. 81, 10621077.