SEARCH

SEARCH BY CITATION

References

  • Albertyn, J., Van Tonder, A. and Prior, B.A. (1992) Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae. FEBS Lett. 308, 130132.
  • Bafor, M., Jonsson, L., Stobart, A.K. and Stymne, S. (1990) Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea-lanceolata. Biochem. J. 272, 3138.
  • Benning, C. and Somerville, C.R. (1992) Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter-sphaeroides. J. Bacteriol. 174, 64796487.
  • Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911917.
  • Bradford, M.M. (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Anal. Biochem. 72, 248254.
  • Broun, P., Gettner, S. and Somerville, C. (1999) Genetic engineering of plant lipids. Annu. Rev. Nutr. 19, 197216.
  • Cao, Y.Z. and Huang, A.H.C. (1986) Diacylglycerol acyltransferase in maturing oil seeds of maize and other species. Plant Physiol. 82, 813820.
  • Commodity Research Bureau (CRB) (2005) CRB Commodity Yearbook. Jersey City, NJ: Commodity Research Bureau.
  • Commodity Research Bureau (CRB) (2006) CRB Commodity Yearbook. Jersey City, NJ: Commodity Research Bureau.
  • DaSilva, P.M.F.R., Eastmond, P.J., Hill, L.M., Smith, A.M. and Rawsthorne, S. (1997) Starch metabolism in developing embryos of oilseed rape. Planta, 203, 480487.
  • Eastmond, P.J. (2004) Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J. 37, 617625.
  • Eastmond, P.J. and Rawsthorne, S. (2000) Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryo. Plant Physiol. 122, 767774.
  • Finlayson, S. and Dennis, D. (1980) NAD+-specific glycerol-3-phosphate dehydrogenase from developing castor bean endosperm. Arch. Biochem. Biophys. 199, 179185.
  • Gee, R., Goyal, A., Gerber, D., Byerrum, R.U. and Tolbert, N.E. (1988) Isolation of dihydroxyacetone phosphate reductase from Dunaliella chloroplasts and comparison with isozymes from spinach leaves. Plant Physiol. 88, 896903.
  • Geigenberger, P. and Stitt, M. (1993) Sucrose synthase catalyzes a readily reversible-reaction in vivo in developing potato-tubers and other plant-tissues. Planta, 189, 329339.
  • Geigenberger, P., Hajirezaei, M., Geiger, M., Deiting, U., Sonnewald, U. and Stitt, M. (1998) Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose–starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta, 205, 428437.
  • Gibon, Y., Vigeolas, H., Tiessen, A., Geigenberger, P. and Stitt, M. (2002) Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J. 30, 221235.
  • Goffman, F.D., Alonso, A.P., Schwender, J., Shachar-Hill, Y. and Ohlrogge, J.B. (2005) Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol. 138, 22692279.
  • Gunstone, F.D. (2001) Soybeans pace boost in oilseed production. Inform. 11, 12871289.
  • Hills, M.J. (2004) Control of storage-product synthesis in seeds. Curr. Opin. Plant Biol. 7, 302308.
  • Hippman, H. and Heinz, E. (1976) Glycerol kinase in leaves. Z. Pflanzenphysiol. 79, 408418.
  • Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation of Vir-region and t-region of the Agrobacterium-tumefaciens Ti-plasmid. Nature, 303, 179180.
  • Huang, A.H.C. (1975) Enzymes of glycerol metabolism in storage tissues of fatty seedlings. Plant Physiol. 55, 555558.
  • Jako, C., Kumar, A., Wei, Y.D., Zou, J.T., Barton, D.L., Giblin, E.M., Covello, P.S. and Taylor, D.C. (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 126, 861874.
  • Jaworski, J. and Cahoon, E.B. (2003) Industrial oils from transgenic plants. Curr. Opin. Plant Biol. 6, 178184.
  • Jelitto, T., Sonnewald, U., Willmitzer, L., Hajirezeai, M. and Stitt, M. (1992) Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing Escherichia-coli pyrophosphatase in their cytosol. Planta, 188, 238244.
  • Josefsson, L.G., Lenman, M., Ericson, M.L. and Rask, L. (1987) Structure of a gene encoding the 1.7 S storage protein, napin, from Brassica napus. J. Biol. Chem. 262, 12 196–12 201.
  • Kachroo, A., Venugopal, S.C., Lapchyk, L., Falcone, D., Hildebrand, D. and Kachroo, P. (2004) Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. Proc. Natl. Acad. Sci. USA, 101, 51525157.
  • Kennedy, E.P. (1961) Biosynthesis of complex lipids. Fed. Proc. 20, 934940.
  • Kirsch, T., Gerber, D.W., Byerrum, R.U. and Tolbert, N.E. (1992) Plant dihydroxyacetone phosphate reductases – purification, characterization, and localization. Plant Physiol. 100, 352359.
  • Kossmann, J., Abel, G.J.W., Springer, F., Lloyd, J.R. and Willmitzer, L. (1999) Cloning and functional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that is predominantly expressed in leaf tissue. Planta, 208, 503511.
  • Lacey, D.J. and Hills, M.J. (1996) Heterogeneity of the endoplasmic reticulum with respect to lipid synthesis in developing seeds of Brassica napus L. Planta, 199, 545551.
  • Lacey, D.J., Wellner, N., Beaudoin, F., Napier, J.A. and Shewry, P.R. (1998) Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochem. J. 334, 469477.
  • Larsson, C., Pahlman, I.L., Ansell, R., Rigoulet, M., Adler, L. and Gustafsson, L. (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast, 14, 347357.
  • Larsson, K., Ansell, R., Eriksson, P. and Adler, L. (1993) A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol. Microbiol. 10, 11011111.
  • Li, Y., Beisson, F., Pollard, M. and Ohlrogge, J. (2006) Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry, 67, 904915.
  • Merlo, L., Geigenberger, P., Hajirezaei, M. and Stitt, M. (1993) Changes of carbohydrates, metabolites and enzyme-activities in potato-tubers during development, and within a single tuber along a stolon-apex gradient. J. Plant. Physiol. 142, 392402.
  • Miquel, M., Cassagne, C. and Browse, J. (1998) A new class of Arabidopsis mutants with reduced hexadecatrienoic acid fatty acid levels. Plant Physiol. 117, 923930.
  • Moloney, M.M., Walker, J.M. and Sharma, K.K. (1989) High-efficiency transformation of Brassica-napus using Agrobacterium vectors. Plant Cell. Rep. 8, 238242.
  • Murphy, D.J. (1994) Biogenesis, function and biotechnology of plant-storage lipids. Prog. Lipid Res. 33, 7185.
  • Nandi, A., Welti, R. and Shah, J. (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell. 16, 465477.
  • Ohlrogge, J.B. and Jaworski, J.G. (1997) Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 109136.
  • Ohlrogge, J.B., Kuhn, D.N. and Stumpf, P.K. (1979) Subcellular-localization of acyl carrier protein in leaf protoplasts of Spinacia-oleracea. Proc. Natl. Acad. Sci. USA, 76, 11941198.
  • Perry, H. and Harwood, J.L. (1993) Changes in the lipid content of developing seeds of Brassica napus. Phytochemistry, 32, 14111415.
  • Perry, H., Bligny, R., Gout, E. and Harwood, J.L. (1999) Changes in Kennedy pathway intermediates associated with increased triacylglycerol synthesis in oil-seed rape. Phytochemistry, 52, 799804.
  • Ramli, U.S., Baker, D.S., Quant, P.A. and Harwood, J.L. (2002) Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly. Biochem. J. 364, 393401.
  • Rawsthorne, S. (2002) Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 41, 182196.
  • Renz, A. and Stitt, M. (1993) Substrate-specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato-tubers. Planta, 190, 166175.
  • Rigoulet, M., Aguilaniu, H., Averet, N., Bunoust, O., Camougrand, N., Grandier-Vazeille, X., Larrson, C., Pahlman, I.L., Manon, S. and Gustafsson, L. (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol. Cell Biochem. 256–257, 7381.
  • Roesler, K., Shintani, D., Savage, L., Boddupalli, S. and Ohlrogge, J. (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol. 113, 7581.
  • Ruuska, S.A., Schwender, J. and Ohlrogge, J.B. (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 136, 27002709.
  • Sadava, D. and Moore, K. (1987) Glycerol metabolism in higher-plants –glycerol kinase. Biochem. Biophys. Res. Commun. 143, 977983.
  • Shahidi, F., Naczk, M. and Myhara, R.M. (1990) Effect of processing on the soluble sugars of Brassica seeds. J. Food Sci. 55, 14701471.
  • Sharma, N., Phutela, A., Malhotra, S.P. and Singh, R. (2001) Purification and characterization of dihydroxyacetone phosphate reductase from immature seeds of Brassica campestris L. Plant Sci. 160, 603610.
  • Shen, W.Y., Wei, Y.D., Dark, M., Tan, Y.F., Taylor, D.C., Selvaraj, G. and Zou, J.T. (2006) Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD(+) ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell, 18, 422441.
  • Shintani, D., Roesler, K., Shorrosh, B., Savage, L. and Ohlrogge, J. (1997) Antisense expression and overexpression of biotin carboxylase in tobacco leaves. Plant Physiol. 114, 881886.
  • Singh, R. (1998) Carbon and energy sources for fatty acid biosynthesis in non photosynthetic plastids of higher plants. Proc. Indian Natl. Sci. Acad. B64, 335354.
  • Stalberg, K., Ellerstom, M., Ezcurra, I., Ablov, S. and Rask, L. (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta, 199, 515519.
  • Stymne, S. and Stobart, A.K. (1987) Triacylglycerol Biosynthesis. In The Biochemistry of Plants: a Comprehensive Treatise, Vol. 9. (Stumpf, P.K., ed), pp. 175214. New York: Academic Press.
  • Taylor, D.C., Katavic, V., Zou, J.T., MacKenzie, S.L., Keller, W.A., An, J., Friesen, W., Barton, D.L., Pedersen, K.K., Giblin, E.M., Ge, Y., Dauk, M., Sonntag, C., Luciw, T. and Males, D. (2002) Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol. Breed. 8, 317322.
  • Thelen, J.J. and Ohlrogge, J.B. (2002a) Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 4, 1221.
  • Thelen, J.J. and Ohlrogge, J.B. (2002b) Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J. 32, 419431.
  • Trethewey, R.N., Geigenberger, P., Riedel, K., Hajirezaei, M.R., Sonnewald, U., Stitt, M., Riesmeier, J.W. and Willmitzer, L. (1998) Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J. 15, 109118.
  • Turnham, E. and Northcote, D.H. (1983) Changes in the activity of acetyl-CoA carboxylase during rape-seed formation. Biochem. J. 15, 223229.
  • Vigeolas, H. and Geigenberger, P. (2004) Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta, 219, 827835.
  • Vigeolas, H., Van Dongen, J.T., Waldeck, P., Hühn, D. and Geigenberger, P. (2003) Lipid storage metabolism is limited by the prevailing low oxygen concentrations within developing seeds of oilseed rape. Plant Physiol. 133, 20482060.
  • Vigeolas, H., Möhlmann, T., Martini, N., Neuhaus, H.E. and Geigenberger, P. (2004) Embryo-specific reduction of ADP-glucose pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of Brassica napus L. Plant Physiol. 136, 26762678.
  • Zhang, H., Vasanthan, T. and Wettasinghe, M. (2001) Dry matter, lipids, and proteins of canola seeds as affected by germination and seedling growth under illuminated and dark environments. J. Agric. Food Chem. 52, 80018005.
  • Zou, J.T., Katavic, V., Giblin, E.M., Barton, D.L., MacKenzie, S.L., Keller, W.A., Hu, X. and Taylor, D.C. (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 9, 909923.