• antibody;
  • doubled haploid (DH);
  • embryogenic pollen culture;
  • tobacco


The large-scale production of plant-derived recombinant proteins requires the breeding of lines homozygous for the transgene(s). These can be selected by progeny testing over multiple sexual generations, but a more efficient means is to fix homozygosity in a single generation using doubled haploid technology. In this study, transgenic tobacco plants, hemizygous for both of the independently inherited genes encoding the light and heavy chains of the anti-human immunodeficiency virus monoclonal antibody 2F5, were used to establish embryogenic pollen cultures. The improved protocol employed in this study guaranteed a very high regeneration efficiency, with more than 50% of the regenerants being spontaneously doubled haploids. Hence, there was no requirement to chemically induce chromosome doubling to recover sufficient entirely homozygous recombinants. As expected, approximately 25% of the regenerants were homozygous for both transgenes. Thus, the employment of haploid technology allowed for the efficient and rapid generation of true-breeding tobacco lines accumulating functional immunoglobulins.