SEARCH

SEARCH BY CITATION

Keywords:

  • cell wall;
  • ferulic acid esterase;
  • transgenic grass;
  • hydroxycinnamic acids;
  • cross-linking;
  • digestibility;
  • tall fescue

Summary

In the cell walls of grasses, ferulic acid is esterified to arabinoxylans and undergoes oxidative reactions to form ferulates dimers, trimers and oligomers. Feruloylation of arabinoxylan is considered important not only because it leads to cross-linked xylans but also because ferulates may act as a nucleating site for the formation of lignin and hence link arabinoxylans to lignin by forming a lignin–ferulate–arabinoxylan complex. Such cross-linking is among the main factors inhibiting the release of fermentable carbohydrates from grasses either for ruminant nutrition or for biofuel production. We have found that significant reductions in the levels of monomeric and dimeric phenolics can be achieved in the growing cell walls during plant development in leaves of Festuca arundinacea by constitutive intracellular targeted expression of Aspergillus niger ferulic acid esterase (FAEA). We propose that this occurred by directly disrupting ester bonds linking phenolics to cell wall polysaccharides by apoplast targeting or by preventing excessive feruloylation of cell wall carbohydrates prior to their incorporation into the cell wall, by targeting to the Golgi membrane system. Plants with lower cell wall ferulate levels, which showed increased digestibility and increased rates of cellulase-mediated release of fermentable sugars, were identified. Targeting FAE to the Golgi was found to be more effective than targeting to the ER, which supports the current theories of the Golgi as the site of feruloylation of arabinoxylans. It is concluded that targeting FAEA expression to the Golgi or apoplast is likely to be an effective strategy for improving wall digestibility in grass species used for fodder or cellulosic ethanol production.