SEARCH

SEARCH BY CITATION

References

  • Andersson, M., Melander, M., Pojmark, P., Larsson, H., Bulow, L. and Hofvander, P. (2006) Targeted gene suppression by RNA interference: an efficient method for production of high-amylose potato lines. J. Biotechnol. 123, 137148.
  • Baroja-Fernández, E., Muñoz, F.J., Saikusa, T., Rodríguez-López, M., Akazawa, T. and Pozueta-Romero, J. (2003) Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol. 44, 500509.
  • Baroja-Fernández, E., Muñoz, F.J., Montero, M., Etxeberria, E., Sesma, M.T., Ovecka, M., Bahaji, A., Ezquer, I., Li, J., Prat, S. and Pozueta-Romero, J. (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 50, 16511662.
  • Clarke, B.R., Denyer, K., Jenner, C.F. and Smith, A.M. (1999) The relationship between the rate of starch synthesis, the adenosine 5′-diphosphoglucose concentration and the amylose content of starch in developing pea embryos. Planta, 209, 324329.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Corbesier, L., Lejeune, P. and Bernier, G. (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta, 206, 131137.
  • Crevillén, P., Ballicora, M.A., Mérida, A., Preiss, J. and Romero, J.M. (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J. Biol. Chem. 278, 2850828515.
  • Ezquer, I., Li, J., Ovecka, M., Baroja-Fernández, E., Muñoz, F.J., Montero, M., Díaz de Cerio, J., Hidalgo, M., Sesma, M.T., Bahaji, A., Etxeberria, E. and Pozueta-Romero, J. (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol. 51, 16741693.
  • Fulton, D.C., Stettler, M., Mettler, T., Vaughan, C.K., Li, J., Francisco, P., Gil, M., Reinhold, H., Eicke, S., Messerli, G., Dorken, G., Halliday, K., Smith, A.M., Smith, S.M. and Zeeman, S.C. (2008) β-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. Plant Cell, 20, 10401058.
  • Geigenberger, P., Stamme, C., Tjaden, J., Schulz, A., Quick, P.W., Betsche, T., Kersting, H.J. and Neuhaus, H.E. (2001) Tuber physiology and properties of starch from tubers of transgenic potato plants with altered plastidic adenylate transporter activity. Plant Physiol. 125, 16671678.
  • Gibon, Y., Pyl, E.T., Sulpice, R., Lunn, J.E., Hohne, M., Gunther, M. and Stitt, M. (2009) Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ. 32, 859874.
  • Giroux, M.J., Shaw, J., Barry, G., Coob, B.G., Greene, T., Okita, T. and Hannah, L.C. (1996) A single gene mutation that increases maize seed weight. Proc. Natl Acad. Sci. USA, 93, 58245829.
  • Hennen-Bierwagen, T.A., Liu, F., Marsh, R.S., Kim, S., Gan, Q., Tetlow, I.J., Emes, M.J., James, M.G. and Myers, A.M. (2008) Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol. 146, 18921908.
  • Ihemere, U., Arias-Garzon, D., Lawrence, S. and Sayre, R. (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol. J. 4, 453465.
  • Li, N., Zhang, S., Zhao, Y., Li, B. and Zhang, J. (2011) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta, 233, 241250.
  • Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402408.
  • Müller- Röber, B., Sonnewald, U. and Willmitzer, L. (1992) Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 11, 12291238.
  • Muñoz, F.J., Baroja-Fernández, E., Morán-Zorzano, M.T., Viale, A.M., Etxeberria, E., Alonso-Casajús, N. and Pozueta-Romero, J. (2005) Sucrose synthase controls both intracellular ADPglucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol. 46, 13661376.
  • Muñoz, F.J., Baroja-Fernández, E., Ovecka, M., Li, J., Mitsui, T., Sesma, M.T., Montero, M., Bahaji, A., Ezquer, I. and Pozueta-Romero, J. (2008) Plastidial localization of a potato “Nudix” hydrolase of ADPglucose linked to starch biosynthesis. Plant Cell Physiol. 49, 17341746.
  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15, 473497.
  • Nielsen, T.H., Wischmann, B., Enevodsen, K. and Moller, B.L. (1994) Starch phosphorylation in potato tubers proceeds concurrently with de novo biosynthesis of starch. Plant Physiol. 105, 111117.
  • Regierer, B., Fernie, A.R., Springer, F., Perez-Melis, A., Leisse, A., Koehl, K., Willmitzer, L., Geigenberger, P. and Kossmann, J. (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat. Biotechnol. 20, 12561260.
  • Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J. and Willmitzer, L. (1989) Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 8, 2329.
  • Rohila, J.S., Chen, M., Cerny, R. and Fromm, M.E. (2004) Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. Plant J. 38, 172181.
  • Roldán, I., Lucas, M.M., Delvalle, D., Planchot, V., Jimenez, S., Perez, R., Ball, S., D’Hulst, C. and Mérida, A. (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 49, 492504.
  • Sakulsingharoj, C., Choi, S.B., Hwang, S.K., Edwards, G.E., Bork, J., Meyer, C.R., Preiss, J. and Okita, T.W. (2004) Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Sci. 167, 13231333.
  • Schulze, W., Stitt, M., Schulze, E.D., Neuhaus, H.E. and Fichtner, K. (1991) A quantification of the significance of assimilatory starch for growth of Arabidopsis thaliana L. Heynh. Plant Physiol. 95, 890895.
  • Schulze, W., Schulze, E.D., Stadler, J., Heilmeier, H., Stitt, M. and Mooney, H.A. (1994) Growth and reproduction of Arabidopsis thaliana in relation to storage of starch and nitrate in the wild-type and in starch-deficient and nitrate-uptake-deficient mutants. Plant Cell Environ. 17, 795809.
  • Shewmaker, C.K., Boyer, C.D., Wiesenborn, D.P., Thompson, D.B., Boersig, M.R., Oakes, J.V. and Stalker, D.M. (1994) Expression of Escherichia coli glycogen synthase in the tubers of transgenic potatoes (Solanum tuberosum) results in a highly branched starch. Plant Physiol. 104, 11591166.
  • Smidansky, E.D., Clancy, M., Meyer, F.D., Lanning, S.P., Blake, N.K., Talbert, L.E. and Giroux, M.J. (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc. Natl Acad. Sci. USA, 99, 17241729.
  • Smidansky, E.D., Martin, J.M., Hannah, L.C., Fischer, A.M. and Giroux, M.J. (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta, 216, 656664.
  • Somerville, C. (2007) Biofuels. Curr. Biol. 17, R115R119.
  • Stark, D.M., Timmerman, K.P., Barry, G.F., Preiss, J. and Kishore, G.M. (1992) Regulation of the amount of starch in plant tissues by ADP-glucose pyrophosphorylase. Science, 258, 287292.
  • Sun, C.W. and Callis, J. (1997) Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant J. 11, 10171027.
  • Sweetlove, L.J., Burrell, M.M. and ap Rees, T. (1996) Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADPglucose pyrophosphorylase. Biochem. J. 320, 493498.
  • Szydlowski, N., Ragel, P., Raynaud, S., Lucas, M.M., Roldán, I., Montero, M., Muñoz, F.J., Ovecka, M., Bahaji, A., Planchot, V., Pozueta-Romero, J., D’Hulst, C. and Mérida, A. (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell, 21, 24432457.
  • Tetlow, I.J., Beisel, K.G., Cameron, S., Makhmoudova, A., Liu, F., Bresolin, N.S., Wait, R., Morell, M.K. and Emes, M.J. (2008) Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol. 146, 18781891.
  • Tjaden, J., Mohlmann, T., Kampfenkel, K., Henrichs, G. and Neuhaus, H.E. (1998) Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J. 16, 531540.
  • Wang, Z., Chen, X., Wang, J., Liu, T., Liu, Y., Zhao, L. and Wang, G. (2007) Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell, Tissue Organ Cult. 88, 8392.
  • Zeeman, S.C., Northrop, F., Smith, A.M. and Rees, T. (1998) A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. Plant J. 15, 357365.
  • Zhang, L., Hausler, R.E., Greiten, C., Hajirezaei, M.R., Haferkamp, I., Neuhaus, H.E., Flugge, U.I. and Ludewig, F. (2008) Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol. J. 6, 453464.
  • Zrenner, R., Salanoubat, M., Willmitzer, L. and Sonnewald, U. (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 7, 97107.