SEARCH

SEARCH BY CITATION

References

  • Akazawa, T., Miljanich, P. and Conn, E.E. (1960) Studies on cyanogenic glycoside of Sorghum vulgare. Plant Physiol. 35, 535538.
  • Bak, S., Kahn, R.A., Nielsen, H.L., Møller, B.L. and Halkier, B.A. (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol. Biol. 36, 393405.
  • Bak, S., Paquette, S.M., Morant, M., Morant, A.V., Saito, S., Bjarnholt, N., Zagrobelny, M., Jørgensen, K., Osmani, S., Simonsen, H.T., Pérez, R.S., Heeswijck, T.B.v., Jørgensen, B. and Møller, B.L. (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev. 5, 309329.
  • Baker, N.A., Sept, D., Joseph, S., Holst, M.J. and McCammon, J.A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA, 98, 1003710041.
  • Busk, P.K. and Møller, B.L. (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129, 12221231.
  • Du, L., Bokanga, M., Møller, B.L. and Halkier, B.A. (1995) The biosynthesis of cyanogenic glucosides in roots of cassava. Phytochemistry, 39, 323326.
  • Duncan, R.R. (1996) Breeding and improvement of forage sorghums for the tropics. Adv. Agron. 57, 161185.
  • Endara, M.-J. and Coley, P.D. (2011) The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389398.
  • Feigl, F. and Anger, V. (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst, 91, 282284.
  • Forslund, K., Morant, M., Jorgensen, B., Olsen, C.E., Asamizu, E., Sato, S., Tabata, S. and Bak, S. (2004) Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant Physiol. 135, 7184.
  • Ghannoum, O. (2009) C4 photosynthesis and water stress. Ann. Bot. 103, 635644.
  • Gleadow, R. and Woodrow, I. (2000) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol. 20, 591598.
  • Gleadow, R. and Woodrow, I. (2002a) Constraints on the effectiveness of cyanogenic glycosides in herbivore defence [mini review]. J. Chem. Ecol. 28, 13011313.
  • Gleadow, R. and Woodrow, I. (2002b) Defence chemistry of Eucalyptus cladocalyx seedlings is affected by water supply. Tree Physiol. 22, 939945.
  • Gleadow, R.M., Vecchies, A.C. and Woodrow, I.E. (2003) Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific ß-glucosidases. Phytochemistry, 63, 699704.
  • Gleadow, R., Bjarnholt, N., Jørgensen, K., Fox, J. and Miller, R. (2010) Detection, identification and quantitative measurement of cyanogenic glycosides. In Research Methods in Plant Science: Soil Allelochemicals (Narwal, S.S., Szajdak, L. and Sampietro, D.A., eds), Chapter 12: pp. 283310. New Delhi, India: International Allelopathy Foundation, Studium Press.
  • Gregory, P.J., Ingram, J.S. and Brklacich, M. (2005) Climate and Food Security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 21392148.
  • Guengerich, F.P., Martin, M.V., Sohl, C.D. and Cheng, Q. (2009) Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4, 12451251.
  • Gupta, V.K. and Paul, Y.S. (2002) Fungal diseases of pearl millet and sorghum. In Diseases of Field Crops (Gupta, V.K. and Paul, Y.S., eds), pp. 128154, New Delhi: Indus Publishing company.
  • Halkier, B.A. and Møller, B.L. (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol. 90, 15521559.
  • Hasemann, C.A., Kurumbail, R.G., Boddupalli, S.S., Peterson, J.A. and Deisenhofer, J. (1995) Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure, 3, 4162.
  • Haskins, F.A. and Gorz, H.J. (1986) Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves. Theor. Appl. Genet. 73, 23.
  • Haskins, F.A., Gorz, H.J., Hill, R.M. and Youngquist, J.B. (1984) Influence of sample treatment on apparent hydrocyanic acid potential of sorghum leaf tissue. Crop Sci. 24, 11581163.
  • Henikoff, S., Till, B.J. and Comai, L. (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630636.
  • Jenrich, R., Trompetter, I., Bak, S., Olsen, C.E., Møller, B.L. and Piotrowski, M. (2007) Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proc. Natl Acad. Sci. USA, 104, 1884818853.
  • Jensen, K. and Møller, B.L. (2010) Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry, 71, 132141.
  • Jensen, K., Osmani, S.A., Hamann, T., Naur, P. and Møller, B.L. (2011) Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein–protein interactions. Phytochemistry, doi:10.1016/j.phytochem.2011.05.001.
  • Jones, D.A. (1998) Why are so many food plants cyanogenic? Phytochemistry, 47, 155162.
  • Jones, P.R., Møller, B.L. and Hoj, P.B. (1999) The UDP-glucose: p-hydroxymandelonitrile-o-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. J. Biol. Chem. 274, 3548335491.
  • Jørgensen, K., Bak, S., Busk, P.K., Sorensen, C., Olsen, C.E., Puonti-Kaerlas, J. and Møller, B.L. (2005a) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 139, 363374.
  • Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S. and Møller, B.L. (2005b) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280291.
  • Jørgensen, K., Morant, A.V., Morant, M., Jensen, N.B., Olsen, C.E., Kannangara, R., Motawia, M.S., Møller, B.L. and Bak, S. (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol. 155, 282292.
  • Kahn, R.A., Bak, S., Svendsen, I., Halkier, B.A. and Møller, B.L. (1997) Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant Physiol. 115, 16611670.
  • Kakes, P. (1989) An analysis of the costs and benefits of the cyanogenic system in Trifolium repens L. Theor. Appl. Genet. 77, 111118.
  • Koch, B.M., Sibbesen, O., Halkier, B.A., Svendsen, I. and Møller, B.L. (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 323, 177186.
  • Kongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S. and Chrestin, H. (2009) The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70, 730739.
  • Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl Acad. Sci. USA, 102, 17791784.
  • Lababidi, S., Mejlhede, N., Rasmussen, S.K., Backes, G., Al-Said, W., Baum, M. and Jahoor, A. (2009) Identification of barley mutants in the cultivar Lux at the Dhn loci through TILLING. Plant Breed. 128, 332336.
  • Lee, T.T. and Skoog, F. (1965) Effects of substituted phenols on bud formation and growth of tobacco tissue cultures. Physiol. Plant. 18, 386402.
  • Lieberei, R. (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann. Bot. 100, 11251142.
  • Loyd, R.C. and Gray, E. (1970) Amount and distribution of hydrocyanic acid potential during the life cycle of plants of three sorghum cultivars. Agron. J. 62, 394397.
  • Miller, R., Jensen, R. and Woodrow, I. (2006) Frequency of cyanogenesis in tropical rainforests of Far North Queensland, Australia. Ann. Bot. 97, 10171044.
  • Møller, B.L. (2010a) Dynamic metabolons. Science, 330, 1328.
  • Møller, B.L. (2010b) Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 13, 337346.
  • Møller, B.L. and Conn, E.E. (1979) The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (L.) Moench. J. Biol. Chem. 254, 85758583.
  • Møller, B.L. and Conn, E.E. (1980) The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. J. Biol. Chem. 255, 30493056.
  • Morant, A.V., Jørgensen, K., Jørgensen, B., Dam, W., Olsen, C.E., Møller, B.L. and Bak, S. (2007) Lessons learned from metabolic engineering of cyanogenic glucosides. Metabolomics, 3, 383398.
  • Morant, A.V., Jørgensen, K., Kristensen, C., Paquette, S.M., Sanchez-Perez, R., Moller, B.L. and Bak, S. (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 69, 17951813.
  • Nielsen, K.A., Tattersall, D.B., Jones, P.R. and Møller, B.L. (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry, 69, 8898.
  • Oleykowski, C.A., Bronson Mullins, C.R., Godwin, A.K. and Yeung, A.T. (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 45974602.
  • Olsen, K.M., Sutherland, B.L. and Small, L.L. (2007) Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.). Mol. Ecol. 16, 41804193.
  • Olsen, K.M., Hsu, S.-C. and Small, L.L. (2008) Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in White Clover (Trifolium repens L.). Genetics, 179, 517526.
  • Paquette, S.M., Jensen, K. and Bak, S. (2009) A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases ( http://www.P450.kvl.dk ). Phytochemistry, 70, 19401947.
  • Selmar, D., Lieberei, R. and Biehl, B. (1988) Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 86, 711716.
  • Seo, S., Mitsuhara, I., Feng, J., Iwai, T., Hasegawa, M. and Ohashi, Y. (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol. 155, 502514.
  • Sibbesen, O., Koch, B., Halkier, B.A. and Møller, B.L. (1994) Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc. Natl Acad. Sci. USA, 91, 97409744.
  • Takos, A., Lai, D., Mikkelsen, L., Abou Hachem, M., Shelton, D., Motawia, M.S., Olsen, C.E., Wang, T.L., Martin, C. and Rook, F. (2010) Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell, 22, 16051619.
  • Talame, V., Bovina, R., Sanguineti, M.C., Tuberosa, R., Lundqvist, U. and Salvi, S. (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 6, 477485.
  • Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., Høj, P.B. and Møller, B.L. (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science, 293, 18261828.
  • Till, B.J., Burtner, C., Comai, L. and Henikoff, S. (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32, 26322641.
  • Till, B.J., Cooper, J., Tai, T.H., Colowit, P., Greene, E.A., Henikoff, S. and Comai, L. (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 7, 19.
  • Wheeler, J. and Mulcahy, C. (1989) Consequences for animal production of cyanogenesis in sorghum forage and hay – a review. Trop. Grassl. 23, 193202.
  • Wheeler, J.L., Mulcahy, A.C., Walcott, J.J. and Rapp, G.G. (1990) Factors affecting the hydrogen cyanide potential of forage sorghum. Aust. J. Agric. Res. 41, 10931100.
  • Xin, Z., Wang, M.L., Barkley, N.A., Burow, G., Franks, C., Pederson, G. and Burke, J. (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol. 8, 103.
  • Zagrobelny, M., Bak, S., Olsen, C.E. and Møller, B.L. (2007) Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochem. Mol. Biol. 37, 11891197.
  • Zerr, T. and Henikoff, S. (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res. 33, 28062812.