SEARCH

SEARCH BY CITATION

References

  • Altpeter, F. and Oraby, H. (2010) Sugarcane. In Genetic Modification of Plants (Kempken, F. and Jung, C., eds), pp. 453472, Berlin Heidelberg: Springer.
  • Altpeter, F., Vasil, V., Srivastava, V., Stöger, E. and Vasil, I.K. (1996) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 16, 1217.
  • Altpeter, F., Xu, J. and Ahmed, S. (2000) Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage- and turf-type cultivars. Mol. Breed. 6, 519528.
  • Altpeter, F., Sandhu, S., Davey, M.R. and Anthony, P. (2010) Genetic transformation – biolistics. In Plant Cell Culture, (Davey, M.R. and Anthony, P.), eds pp. 217239. Chichester, UK: John Wiley & Sons, Ltd.
  • Arencibia, A.D., Carmona, E.R., Tellez, P., Chan, M.T., Yu, S.M., Trujillo, L.E. and Oramas, P. (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7, 213222.
  • Boerjan, W., Ralph, J. and Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519546.
  • Bonawitz, N.D. and Chapple, C. (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu. Rev. Genet. 44, 337363.
  • Bout, S. and Vermerris, W. (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Genet. Genomics, 269, 205214.
  • Bouton, J. (2008) Improvement of switchgrass as a bioenergy crop. In Genetic Improvement of Bioenergy Crops (Vermerris, W., ed), pp. 309345, New York, NY: Springer.
  • Bower, R. and Birch, R.G. (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2, 409416.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • Bregitzer, P., Dahleen, L.S., Neate, S., Schwarz, P. and Manoharan, M. (2008) A single backcross effectively eliminates agronomic and quality alterations caused by somaclonal variation in transgenic barley. Crop Sci. 48, 471479.
  • Brown, T., Mackey, K. and Du, T. (2004) Analysis of RNA by northern and slot blot hybridization. In Current Protocols in Molecular Biology. Chichester, UK: John Wiley & Sons, Inc.
  • Byrt, C.S., Grof, C.P.L. and Furbank, R.T. (2011) C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. J. Integr. Plant Biol. 53, 120135.
  • Chen, F. and Dixon, R.A. (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25, 759761.
  • Chengalrayan, K. and Gallo-Meagher, M. (2001) Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell. Dev. Biol. Plant, 37, 434439.
  • Chernoglazov, V., Ermolova, O. and Klyosov, A. (1988) Adsorption of high-purity endo-1,4-beta-glucanases from Trichoderma reesei on component of lignocellulosic materuals: Cellulose, lignin and xylan. Enzyme Microb. Technol. 10, 503507.
  • Dal-Bianco, M., Carneiro, M.S., Hotta, C.T., Chapola, R.G., Hoffmann, H.P., Garcia, A.A. and Souza, G.M. (2011) Sugarcane improvement: how far can we go? Curr. Opin. Biotechnol. 23, 16.
  • Dien, B., Sarath, G., Pedersen, J., Sattler, S., Chen, H., Funnell-Harris, D., Nichols, N. and Cotta, M. (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. Bioenerg. Res. 2, 153164.
  • Dixon, R.A. and Paiva, N.L. (1995) Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 10851097.
  • Foster, C.E., Martin, T.M. and Pauly, M. (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J. Vis. Exp. 37, Pii, 1837. Doi: 10.3791/1837.
  • Fouad, W., Martin, L., Vermerris, W. and Altpeter, F. (2010) Altering lignin content in bahia grass (Paspalum notatum Flugge) by downregulation of 4-coumarate–CoA ligase. In 2010 In Vitro Biology Meeting and IAPB 12th World Congress Abstract Issue, pp. S114P-052, St. Louis, MO: Springer Verlag.
  • Fu, C., Mielenz, J.R., Xiao, X., Ge, Y., Hamilton, C.Y., Rodriguez, M., Chen, F., Foston, M., Ragauskas, A., Jr, Bouton, J., Dixon, R.A. and Wang, Z.Y. (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl Acad. Sci. USA, 108, 38033808.
  • Gallo-Meagher, M. and Irvine, J.E. (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci. 36, 13671374.
  • Garsmeur, O., Charron, C., Bocs, S., Jouffe, V., Samain, S., Couloux, A., Droc, G., Zini, C., Glaszmann, J.C., Van Sluys, M.A. and D’Hont, A. (2011) High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane. New Phytol. 189, 629642.
  • Gilbert, R.A., Gallo-Meagher, M., Comstock, J.C., Miller, J.D., Jain, M. and Abouzid, A. (2005) Agronomic evaluation of sugarcane lines transformed for resistance to strain E. Crop Sci. 45, 20602067.
  • Guo, D., Chen, F., Inoue, K., Blount, J.W. and Dixon, R.A. (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell, 13, 7388.
  • Hatfield, R.D., Grabber, J., Ralph, J. and Brei, K. (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J. Agric. Food Chem. 47, 628632.
  • He, L. and Terashima, N. (1990) Formation and structure of lignin in monocotyledons. III. Heterogeneity of sugarcane (Saccharum officinarum L.) lignin with respect to the composition of structural units in different morphological regions. J. Wood Chem. Technol. 10, 435459.
  • Heaton, E.A., Dohleman, F.G. and Long, S.P. (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol. 14, 20002014.
  • Hisano, H., Nandakumar, R. and Wang, Z.Y. (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell. Dev. Biol. Plant, 45, 306313.
  • Humphreys, J.M., Hemm, M.R. and Chapple, C. (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA, 96, 1004510050.
  • Iskandar, H., Simpson, R., Casu, R., Bonnett, G., Maclean, D. and Manners, J. (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol. Biol. Rep. 22, 325337.
  • Jackson, L., Shadle, G., Zhou, R., Nakashima, J., Chen, F. and Dixon, R. (2008) Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenerg. Res. 1, 180192.
  • Jørgensen, H., Kristensen, J.B. and Felby, C. (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod. Biorefin. 1, 119134.
  • Kim, J., Gallo, M. and Altpeter, F. (2012) Analysis of transgene integration and expression following biolistic transfer of different quantities of minimal expression cassette into sugarcane (Saccharum spp. hybrids). Plant Cell Tiss. Org. Cult. 108, 297302.
  • Lakshmanan, P., Geijskes, R., Aitken, K., Grof, C., Bonnett, G. and Smith, G. (2005) Sugarcane biotechnology: The challenges and opportunities. In Vitro Cell. Dev. Biol. Plant, 41, 345363.
  • Lawrence, R.J. and Pikaard, C.S. (2003) Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J. 36, 114121.
  • Le Cunff, L., Garsmeur, O., Raboin, L.M., Pauquet, J., Telismart, H., Selvi, A., Grivet, L., Philippe, R., Begum, D., Deu, M., Costet, L., Wing, R., Glaszmann, J.C. and D’Hont, A. (2008) Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n∼12x∼115). Genetics, 180, 649660.
  • Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods, 25, 402408.
  • Louie, G.V., Bowman, M.E., Tu, Y., Mouradov, A., Spangenberg, G. and Noel, J.P. (2010) Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell, 22, 41144127.
  • Lu, Y. and Mosier, N.S. (2008) Current technologies for fuel ethanol production from lignocellulosic plant biomass. In Genetic Improvement of Bioenergy Crops (Vermerris, W., ed), pp. 161182, New York, NY: Springer.
  • Lu, C., Meyers, B.C. and Green, P.J. (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods, 43, 110117.
  • Mansfield, S.D., Mooney, C. and Saddler, J.N. (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15, 804816.
  • Miki, D., Itoh, R. and Shimamoto, K. (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 138, 19031913.
  • Miller, J.E., Geadelmann, J.L. and Marten, G.C. (1983) Effect of the brown midrib-allele on maize silage quality and yield. Crop Sci. 23, 493496.
  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. and Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673686.
  • Murray, M.G. and Thompson, W.F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 43214326.
  • Noel, J.P., Dixon, R.A., Pichersky, E., Zubieta, C. and Ferrer, J.L. (2003) Structural, functional, and evolutionary basis for methylation of plant small molecules. In Recent Advances in Phytochemistry; Integrative Phytochemistry: from Ethnobotany to Molecular Ecology (John, T.R., ed), pp. 3758, New York: Elsevier Science.
  • Oliver, A.L., Pedersen, J.F., Grant, R.J. and Klopfenstein, T.J. (2005) Comparative effects of the sorghum bmr-6 and bmr-12 genes. Crop Sci. 45, 22342239.
  • Osabe, K., Mudge, S., Graham, M. and Birch, R. (2009) RNAi mediated down-regulation of PDS gene expression in sugarcane (Saccharum), a highly polyploid crop. Trop. Plant Biol. 2, 143148.
  • Osakabe, K., Tsao, C.C., Li, L., Popko, J.L., Umezawa, T., Carraway, D.T., Smeltzer, R.H., Joshi, C.P. and Chiang, V.L. (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc. Natl Acad. Sci. USA, 96, 89558960.
  • Palmer, N.A., Sattler, S.E., Saathoff, A.J., Funnell, D., Pedersen, J.F. and Sarath, G. (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta, 229, 115127.
  • Pilate, G., Guiney, E., Holt, K., Petit-Conil, M., Lapierre, C., Leple, J.C., Pollet, B., Mila, I., Webster, E.A., Marstorp, H.G., Hopkins, D.W., Jouanin, L., Boerjan, W., Schuch, W., Cornu, D. and Halpin, C. (2002) Field and pulping performances of transgenic trees with altered lignification. Nat. Biotech. 20, 607612.
  • Piquemal, J., Chamayou, S., Nadaud, I., Beckert, M., Barrière, Y., Mila, I., Lapierre, C., Rigau, J., Puigdomènech, P., Jauneau, A., Digonnet, C., Boudet, A.-M., Goffner, D. and Pichon, M. (2002) Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol. 130, 16751685.
  • Ramos, R.L.B., Tovar, F.J., Junqueira, R.M., Lino, F.B. and Sachetto-Martins, G. (2001) Sugarcane expressed sequences tags (ESTs) encoding enzymes involved in lignin biosynthesis pathways. Genet. Mol. Biol. 24, 235241.
  • Robinson, A.R. and Mansfield, S.D. (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J. 58, 706714.
  • Ruelland, E., Campalans, A., Selman-Housein, G., Puigdomènech, P. and Rigau, J. (2003) Cellular and subcellular localization of the lignin biosynthetic enzymes caffeic acid-O-methyltransferase, cinnamyl alcohol dehydrogenase and cinnamoyl-coenzyme A reductase in two monocots, sugarcane and maize. Physiol. Plant. 117, 9399.
  • Saathoff, A.J., Sarath, G., Chow, E.K., Dien, B.S. and Tobias, C.M. (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 6, e16416.
  • Saballos, A., Vermerris, W., Rivera, L. and Ejeta, G. (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenerg. Res. 1, 193204.
  • Selig, M., Weiss, N. and Ji, Y. (2008) National Renewable Energy Laboratory (NREL), Enzymatic Saccharification of Lignocellulosic Biomass. In Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42629. Golden, CO: NREL.
  • Selman-Housein, G., López Ma, A., Hernández, D., Civardi, L., Miranda, F., Rigau, J. and Puigdomènech, P. (1999) Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant Sci. 143, 163171.
  • Shirzadegan, M., Christie, P. and Seemann, J.R. (1991) An efficient method for isolation of RNA from tissue cultured plant cells. Nucleic Acids Res. 19, 6055.
  • Somerville, C., Youngs, H., Taylor, C., Davis, S.C. and Long, S.P. (2010) Feedstocks for lignocellulosic biofuels. Science, 329, 790792.
  • Taparia, Y., Fouad, W., Gallo, M. and Altpeter, F. (2012a) Rapid production of transgenic sugarcane with the introduction of simple loci following biolistic transfer of a minimal expression cassette and direct embryogenesis. In Vitro Cell. Dev. Biol. Plant, 48, 1522.
  • Taparia, Y., Gallo, M. and Altpeter, F. (2012b) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell Tiss. Org. Cult., In press.
  • Tew, T.L. and Cobill, R.M. (2008) Genetic improvement of sugarcane (saccharum spp.) as an energy crop. In Genetic Improvement of Bioenergy Crops (Vermerris, W., ed), pp. 273294, New York, NY: Springer.
  • Travella, S., Klimm, T.E. and Keller, B. (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol. 142, 620.
  • Vermerris, W. and Nicholson, R. eds (2006) Isolation and Identification of Phenolic Compounds. In Phenolic Compound Biochemistry pp. 151196, Dordrecht, the Netherlands: Springer.
  • Vermerris, W., Saballos, A., Ejeta, G., Moser, N., Ladisch, M. and Carpita, N. (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 47, S142S153.
  • Waclawovsky, A.J., Sato, P.M., Lembke, C.G., Moore, P.H. and Souza, G.M. (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol. J. 8, 263276.
  • Weng, J.K., Li, X., Bonawitz, N.D. and Chapple, C. (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol. 19, 166172.
  • Xu, Z., Zhang, D., Hu, J., Zhou, X., Ye, X., Reichel, K.L., Stewart, N.R., Syrenne, R.D., Yang, X., Gao, P., Shi, W., Doeppke, C., Sykes, R.W., Burris, J.N., Bozell, J.J., Cheng, M.Z., Hayes, D.G., Labbe, N., Davis, M., Stewart, C.N., Jr. and Yuan, J.S. (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics, 10(Suppl. 11), S3.
  • Xu, B., Escamilla-Treviño, L.L., Sathitsuksanoh, N., Shen, Z., Shen, H., Percival Zhang, Y.H., Dixon, R.A. and Zhao, B. (2011) Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol. 192, 611625.
  • Yang, B. and Wyman, C. (2004) Effect or xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86, 8898.
  • Yue, F., Lu, F., Sun, R.C. and Ralph, J. (2012) Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation standards. J. Agric. Food Chem. 60, 922928.
  • Zhou, J.-M., Lee, E., Kanapathy-Sinnaiaha, F., Park, Y., Kornblatt, J., Lim, Y. and Ibrahim, R. (2010) Structure-function relationships of wheat flavone O-methyltransferase: homology modeling and site-directed mutagenesis. BMC Plant Biol. 10, 156.