SEARCH

SEARCH BY CITATION

References

  • Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86 (3), 201221.
  • Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98 (3), 199222.
  • Barth, H., La Mont, K., Lipton, J., & Spelke, E.S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences, USA, 102 (39), 1411614121.
  • Berch, D.B. (2005). Making sense of number sense: implications for children with mathematical disabilities. Journal of Learning Disabilities, 38 (4), 333339.
  • Booth, J.L., & Siegler, R.S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42 (1), 189201.
  • Booth, J.L., & Siegler, R.S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79 (4), 10161031.
  • Brannon, E.M., Jordan, K.E., & Jones, S.M. (2010). Behavioral signatures of numerical discrimination. In M.L. Platt & A.A. Ghazanfar (Eds.), Primate neuroethology (pp. 144159). Oxford: Oxford University Press.
  • Bull, R., & Johnston, R.S. (1997). Children’s arithmetical difficulties: contributions from processing speed, item identification, and short-term memory. Journal of Experimental Child Psychology, 65 (1), 124.
  • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14 (12), 534541.
  • Carey, S. (2000). The origin of concepts. Journal of Cognition and Development, 1, 3741.
  • Condry, K.F., & Spelke, E.S. (2008). The development of language and abstract concepts: the case of natural number. Journal of Experimental Psychology: General, 137 (1), 2238.
  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.
  • Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neuroscience, 21 (8), 355361.
  • De Smedt, B., Verschaffel, L., & Ghesquiere, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103 (4), 469479.
  • Dunn, L.M., & Dunn, D.M. (2007). Peabody Picture Vocabulary Test (4th edn.). San Antonio, TX: Pearson.
  • Durand, M., Hulme, C., Larkin, R., & Snowling, M. (2005). The cognitive foundations of reading and arithmetic skills in 7- to 10-year-olds. Journal of Experimental Child Psychology, 91 (2), 113136.
  • Eger, E., Sterzer, P., Russ, M.O., Giraud, A.L., & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37 (4), 719725.
  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8 (7), 307314.
  • Gallistel, C.R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44 (1–2), 4374.
  • Gallistel, C.R., & Gelman, I.I. (2000). Non-verbal numerical cognition: from reals to integers. Trends in Cognitive Sciences, 4 (2), 5965.
  • Geary, D.C. (1993). Mathematical disabilities: cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114 (2), 345362.
  • Geary, D.C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37 (1), 415.
  • Gersten, R., Jordan, N.C., & Flojo, J.R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38 (4), 293304.
  • Gilmore, C.K., McCarthy, S.E., & Spelke, E.S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447 (7144), 589591.
  • Gilmore, C.K., McCarthy, S.E., & Spelke, E.S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115 (3), 394406.
  • Ginsburg, H.P., & Baroody, A.J. (2003). Test of Early Mathematics Ability-Third Edition. Austin, TX: Pro Ed.
  • Griffin, S.A., Case, R., & Siegler, R.S. (1994). Rightstart: providing the central conceptual prerequisites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 2549). Cambridge, MA: MIT Press.
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the ‘number sense’: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44 (5), 14571465.
  • Halberda, J., Germine, L., Ly, R., Naiman, D., Nakyama, K., & Willmer, J. (2011). Precision of the approximate number system across the lifespan. Manuscript under review.
  • Halberda, J., Mazzocco, M.M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455 (7213), 665668.
  • Holloway, I.D., & Ansari, D. (2008). Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103 (1), 1729.
  • Izard, V., Sann, C., Spelke, E.S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, USA, 106 (25), 1038210385.
  • Jordan, N.C., Kaplan, D., Locuniak, M.N., & Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research & Practice, 22 (1), 3646.
  • Jordan, N.C., Kaplan, D., Olah, L.N., & Locuniak, M.N. (2006). Number sense growth in kindergarten: a longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77 (1), 153175.
  • Jordan, N.C., Kaplan, D., Ramineni, C., & Locuniak, M.N. (2009). Early math matters: kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45 (3), 850867.
  • Kalchman, M., Moss, J., & Case, R. (2001). Psychological models for the development of mathematical understanding: rational numbers and functions. In S.M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 138). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Klibanoff, R.S., Levine, S.C., Huttenlocher, J., Vasilyeva, M., & Hedges, L.V. (2006). Preschool children’s mathematical knowledge: the effect of teacher ‘math talk’. Developmental Psychology, 42 (1), 5969.
  • Koontz, K.L., & Berch, D.B. (1996). Identifying simple numerical stimuli: processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2, 123.
  • Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition, 105 (2), 395438.
  • Libertus, M.E., & Brannon, E.M. (2009). Behavioral and neural basis of number sense in infancy. Current Directions in Psychological Science, 18 (6), 346351.
    Direct Link:
  • Libertus, M.E., & Brannon, E.M. (2010). Stable individual differences in number discrimination in infancy. Developmental Science, 13 (6), 900906.
  • Libertus, M.E., Stevenson, A., Odic, D., Feigenson, L., & Halberda, J. (in preparation). The Developmental Vocabulary Assessment for Parents (DVAP): a novel tool to measure vocabulary size in 3- to 5-year-old children.
  • Lipton, J.S., & Spelke, E.S. (2003). Origins of number sense: large-number discrimination in human infants. Psychological Science, 14 (5), 396401.
    Direct Link:
  • Mabott, D.J., & Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41 (15), 1528.
  • McCrink, K., & Spelke, E.S. (2010). Core multiplication in childhood. Cognition, 116 (2), 204216.
  • McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15 (11), 776781.
    Direct Link:
  • McLean, J.F., & Hitch, G.J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74 (3), 240260.
  • Maloney, E.A., Ansari, D., & Fugelsang, J.A. (2011). The effect of mathematics anxiety on the processing of numerical magnitude. Quarterly Journal of Experimental Psychology, 64 (1), 1016.
  • Maloney, E.A., Risko, E.F., Ansari, D., & Fugelsang, J. (2010). Mathematics anxiety affects counting but not subitizing during visual enumeration. Cognition, 114 (2), 293297.
  • Mazzocco, M.M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82 (4), 12241237.
  • Mazzocco, M.M., & Thompson, R.E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research and Practice, 20 (3), 142155.
  • Melhuish, E.C., Sylva, K., Sammons, P., Siraj-Blatchford, I., Taggart, B., Phan, M.B., & Malin, A. (2008). Preschool influences on mathematics achievement. Science, 321 (5893), 11611162.
  • Mundy, E., & Gilmore, C.K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103 (4), 490502.
  • NCTM (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • Newcomber, P. (2001). Diagnostic Achievement Battery - Third Edition. Austin, TX: Pro Ed.
  • Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185208.
  • NMAP (2008). The final report of the National Mathematics Advisory Panel. Retrieved 7 February 2011 from: http://www2.ed.gov/about/bdscomm/list/mathpanel/index.html.
  • Paglin, M., & Rufolo, A.M. (1990). Heterogeneous human capital, occupational choice, and male–female earnings differences. Journal of Labor Economics, 8, 123144.
  • Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy.
  • Passolunghi, M.C., & Siegel, L.S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 80 (1), 4457.
  • Piazza, M., Facoetti, A., Trussardi, A.N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116 (1), 3341.
  • Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306 (5695), 499503.
  • Rivera-Batiz, F.L. (1992). Quantitative literacy and the likelihood of employment among young adults in the United States. Journal of Human Resources, 27 (2), 313328.
  • Rose, H., & Betts, J.R. (2004). The effect of high school courses on earnings. Review of Economics and Statistics, 86 (2), 497513.
  • Rousselle, L., & Noel, M.P. (2007). Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102 (3), 361395.
  • Siegler, R.S., & Ramani, G.B. (2009). Playing linear number board games–but not circular ones–improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101 (3), 545560.
  • Wilson, K.M., & Swanson, H.L. (2001). Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit? Journal of Learning Disabilities, 34 (3), 237248.
  • Woodcock, R.W., McGrew, K.S., & Mather, N. (2001). Woodcock-Johnson III Tests of Achievement. Rolling Meadows, IL: Riverside Publishing.
  • Xu, F., & Spelke, E.S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74 (1), B1B11.