SEARCH

SEARCH BY CITATION

References

  • 1
    Carnell S, Wardle J. Appetite and adiposity: a behavioral susceptibility model of obesity. Am J Clin Nutr 2008; 88: 2230.
  • 2
    Neary MT, Batterham RL. Gaining new insights into food reward with functional neuroimaging. Forum Nutr 2010; 63: 152163.
  • 3
    Zhang Y, von Deneen KM, Tian J, Gold MS, Liu Y. Food addiction and neuroimaging. Curr Pharm Des 2011; 17: 11491157.
  • 4
    Kringelbach ML, Stein A. Cortical mechanisms of human eating. Forum Nutr 2010; 63: 164175.
  • 5
    Amaro E Jr, Barker GJ. Study design in fMRI: basic principles. Brain Cogn 2006; 60: 220232.
  • 6
    Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 2007; 37: 410421.
  • 7
    Stoeckel LE, Weller RE, Cook EW 3rd, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 2008; 41: 636647.
  • 8
    Stoeckel LE, Kim J, Weller RE, Cox JE, Cook EW 3rd, Horwitz B. Effective connectivity of a reward network in obese women. Brain Res Bull 2009; 79: 388395.
  • 9
    Martin LE, Holsen LM, Chambers RJ, Bruce AS, Brooks WM, Zarcone JR et al. Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity (Silver Spring) 2010; 18: 254260.
  • 10
    Del Parigi A, Chen K, Salbe AD, Reiman EM, Tataranni PA. Sensory experience of food and obesity: a positron emission tomography study of the brain regions affected by tasting a liquid meal after a prolonged fast. Neuroimage 2005; 24: 436443.
  • 11
    Bragulat V, Dzemidzic M, Bruno C, Cox CA, Talavage T, Considine RV et al. Food-related odor probes of brain reward circuits during hunger: a pilot fMRI study. Obesity (Silver Spring) 2010; 18: 15661571.
  • 12
    Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 1999; 48: 18011806.
  • 13
    Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M et al. Differential brain responses to satiation in obese and lean men. Diabetes 2000; 49: 838846.
  • 14
    Le DS, Pannacciulli N, Chen K, Del Parigi A, Salbe AD, Reiman EM et al. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am J Clin Nutr 2006; 84: 725731.
  • 15
    Le DS, Pannacciulli N, Chen K, Salbe AD, Del Parigi A, Hill JO et al. Less activation in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal in obese than in lean women and its association with successful weight loss. Am J Clin Nutr 2007; 86: 573579.
  • 16
    Thomas GN, Critchley JA, Tomlinson B, Cockram CS, Chan JC. Relationships between the TaqI polymorphism of the dopamine D2 receptor and blood pressure in hyperglycaemic and normoglycaemic Chinese subjects. Clin Endocrinol (Oxf) 2001; 55: 605611.
  • 17
    Comings DE, Gade R, MacMurray JP, Muhleman D, Peters WR. Genetic variants of the human obesity (OB) gene: association with body mass index in young women, psychiatric symptoms, and interaction with the dopamine D2 receptor (DRD2) gene. Mol Psychiatry 1996; 1: 325335.
  • 18
    Blum K, Braverman ER, Wood RC, Gill J, Li C, Chen TJ et al. Increased prevalence of the TaqI A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report. Pharmacogenetics 1996; 6: 297305.
  • 19
    Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354357.
  • 20
    Haltia LT, Rinne JO, Merisaari H, Maguire RP, Savontaus E, Helin S et al. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse 2007; 61: 748756.
  • 21
    Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008; 42: 15371543.
  • 22
    Stice E, Burger KS. Reward abnormalities and obesity: evidence from brain imaging studies. J Neurosci 2011 (in press).
  • 23
    Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol 2008; 117: 924935.
  • 24
    Berridge KC. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 2009; 97: 537550.
  • 25
    Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine's role in drug abuse and addiction. Neuropharmacology 2009; 56 (Suppl. 1): 38.
  • 26
    Ward MA, Carlsson CM, Trivedi MA, Sager MA, Johnson SC. The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC Neurol 2005; 5: 2329.
  • 27
    Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Grieve S et al. Relationship between body mass index and brain volume in healthy adults. Int J Neurosci 2008; 118: 15821593.
  • 28
    Pannacciulli N, Del Parigi A, Chen K, Le DS, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage 2006; 31: 14191425.
  • 29
    Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH et al. Brain structure and obesity. Hum Brain Mapp 2010; 31: 353364.
  • 30
    Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I, Winblad B et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 2005; 62: 15561560.
  • 31
    Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology 2008; 71: 10571064.
  • 32
    Dahl A, Hassing LB, Fransson E, Berg S, Gatz M, Reynolds CA et al. Being overweight in midlife is associated with lower cognitive ability and steeper cognitive decline in late life. J Gerontol A Biol Sci Med Sci 2010; 65: 5762.
  • 33
    Lim DC, Veasey SC. Neural injury in sleep apnea. Curr Neurol Neurosci Rep 2010; 10: 4752.
  • 34
    Bruce-Keller AJ, Keller JN, Morrison CD. Obesity and vulnerability of the CNS. Biochim Biophys Acta 2009; 1792: 395400.
  • 35
    Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK et al. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 2010; 219: 2532.
  • 36
    Del Parigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM et al. Persistence of abnormal neural responses to a meal in postobese individuals. Int J Obes Relat Metab Disord 2004; 28: 370377.
  • 37
    Cornier MA, Salzberg AK, Endly DC, Bessesen DH, Rojas DC, Tregellas JR. The effects of overfeeding on the neuronal response to visual food cues in thin and reduced-obese individuals. PLoS ONE 2009; 4: e6310.
  • 38
    Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest 2008; 118: 25832591.
  • 39
    Stice E, Yokum S, Blum K, Bohon C. Weight gain is associated with reduced striatal response to palatable food. J Neurosci 2010; 30: 1310513109.
  • 40
    Bruce AS, Holsen LM, Chambers RJ, Martin LE, Brooks WM, Zarcone JR et al. Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int J Obes (Lond) 2010; 34: 14941500.
  • 41
    Stice E, Yokum S, Bohon C, Marti N, Smolen A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 2010; 50: 16181625.
  • 42
    Stice E, Spoor S, Bohon C, Small DM. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008; 322: 449452.
  • 43
    Vimaleswaran KS, Loos RJ. Progress in the genetics of common obesity and type 2 diabetes. Expert Rev Mol Med 2010; 12: e7.
  • 44
    Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD et al. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci U S A 2010; 107: 84048409.
  • 45
    Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42: 937948.
  • 46
    Wardle J, Carnell S, Haworth C, Farooqi I, O'Rahily S, Plomin R. Obesity-associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab 2008; 93: 36403643.
  • 47
    Timpson NJ, Emmett PM, Frayling TM, Rogers I, Hattersley AT, McCarthy MI et al. The fat mass- and obesity-associated locus and dietary intake in children. Am J Clin Nutr 2008; 88: 971978.
  • 48
    Stice E, Yokum S, Burger KS, Epstein LH, Small DM. Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J Neurosci 2011; 31: 43604366.
  • 49
    Carnell S, Wardle J. Appetitive traits in children. New evidence for associations with weight and a common, obesity-associated genetic variant. Appetite 2009; 53: 260263.
  • 50
    Passamonti L, Rowe JB, Schwarzbauer C, Ewbank MP, von dem Hagen E, Calder AJ. Personality predicts the brain's response to viewing appetizing foods: the neural basis of a risk factor for overeating. J Neurosci 2009; 29: 4351.
  • 51
    Del Parigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes (Lond) 2007; 31: 440448.
  • 52
    Volkow ND, Wang GJ, Maynard L, Jayne M, Fowler JS, Zhu W et al. Brain dopamine is associated with eating behaviors in humans. Int J Eat Disord 2003; 33: 136142.
  • 53
    Van Strien T, Frijters JER, Bergers GPA, Defares PB. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, emotional, and external eating behavior. Int J Eat Disord 1986; 5: 295315.
  • 54
    Burger KS, Stice E. Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures. Neuroimage 2011; 55: 233239.
  • 55
    Herman CP, Polivy J. Restrained Eating. W.B. Saunders: Philadelphia, 1980.
  • 56
    Coletta M, Platek S, Mohamed FB, van Steenburgh JJ, Green D, Lowe MR. Brain activation in restrained and unrestrained eaters: an fMRI study. J Abnorm Psychol 2009; 118: 598609.
  • 57
    Bohon C, Stice E, Spoor S. Female emotional eaters show abnormalities in consummatory and anticipatory food reward: a functional magnetic resonance imaging study. Int J Eat Disord 2009; 42: 210221.
  • 58
    Karhunen LJ, Vanninen EJ, Kuikka JT, Lappalainen RI, Tiihonen J, Uusitupa MI. Regional cerebral blood flow during exposure to food in obese binge eating women. Psychiatry Res 2000; 99: 2942.
  • 59
    Geliebter A, Ladell T, Logan M, Schneider T, Sharafi M, Hirsch J. Responsivity to food stimuli in obese and lean binge eaters using functional MRI. Appetite 2006; 46: 3135.
  • 60
    Schienle A, Schafer A, Hermann A, Vaitl D. Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol Psychiatry 2009; 65: 654661.
  • 61
    Wang GJ, Geliebter A, Volkow ND, Telang FW, Logan J, Jayne MC et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity (Silver Spring) 2011; 19: 16011608.
  • 62
    Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry 2011; 68: 808816.
  • 63
    Baicy K, London ED, Monterosso J, Wong ML, Delibasi T, Sharma A et al. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci U S A 2007; 104: 1827618279.
  • 64
    Farooqi IS, Bullmore E, Keogh J, Gillard J, O'Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science 2007; 317: 1355.
  • 65
    Holsen LM, Zarcone JR, Brooks WM, Butler MG, Thompson TI, Ahluwalia JS et al. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity (Silver Spring) 2006; 14: 10281037.
  • 66
    Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg 2010; 20: 369374.
  • 67
    Dunn JP, Cowan RL, Volkow ND, Feurer ID, Li R, Williams DB et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res 2010; 1350: 123130.
  • 68
    Ochner CN, Kwok Y, Conceicao E, Pantazatos SP, Puma LM, Carnell S et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg 2011; 253: 502507.
  • 69
    Gibson CD, Carnell S, Ochner CN, Geliebter A. Neuroimaging, gut peptides and obesity: novel studies of the neurobiology of appetite. J Neuroendocrinol 2010; 22: 833845.
  • 70
    Stice E, Spoor S, Bohon C, Veldhuizen M, Small D. Relation of reward from food intake and anticipated food intake to obesity. J Abnorm Psychol 2008; 117: 924935.
  • 71
    Holsen LM, Zarcone JR, Thompson TI, Brooks WM, Anderson MF, Ahluwalia JS et al. Neural mechanisms underlying food motivation in children and adolescents 2005. Neuroimage 2005; 27: 669676.
  • 72
    Batterink L, Yokum S, Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage 2010; 52: 16961703.
  • 73
    Beaver JD, Lawrence AD, van Ditzhuijzen J, Davis MH, Woods A, Calder AJ. Individual differences in reward drive predict neural responses to images of food. J Neurosci 2006; 26: 51605166.