SEARCH

SEARCH BY CITATION

References

  • 1
    Pi-Sunyer FX. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 2002; 10(Suppl. 2): 97S104S.
  • 2
    Li Z, Bowerman S, Heber D. Health ramifications of the obesity epidemic. Surg Clin North Am 2005; 85: 681701.
  • 3
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003; 290: 486494.
  • 4
    Califf RM, Boolell M, Haffner SM et al. Prevention of diabetes and cardiovascular disease in patients with impaired glucose tolerance: rationale and design of the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) Trial. Am Heart J 2008; 156: 623632.
  • 5
    Roumen C, Corpeleijn E, Feskens EJ, Mensink M, Saris WH, Blaak EE. Impact of 3-year lifestyle intervention on postprandial glucose metabolism: the SLIM study. Diabet Med 2008; 25: 597605.
  • 6
    Tuomilehto J, Lindstrom J, Eriksson JG et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 13431350.
  • 7
    Knowler WC, Barrett-Connor E, Fowler SE et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393403.
  • 8
    Brand-Miller JC, Holt SH, Pawlak DB, McMillan J. Glycemic index and obesity. Am J Clin Nutr 2002; 76: 281S285S.
  • 9
    Frayn KN, Arner P, Yki-Jarvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 2006; 42: 89103.
  • 10
    Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr 2002; 76: 274S280S.
  • 11
    Jenkins DJ, Wolever TM, Taylor RH et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34: 362366.
  • 12
    Blundell J, Rogers P, Hill A. Evaluating the satiating power of foods: implications for acceptance and consumption. In: Solms J (ed.). Chemical composition and sensory properties of food and their influence on nutrition. London: Academic Press, 1988, pp. 205219.
  • 13
    Blundell JE, Rogers PJ. Satiating power of food. Enc Hum Biol 1991; 6: 723733.
  • 14
    Blundell J, de Graaf C, Hulshof T et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev 2010; 11: 251270.
  • 15
    Roberts SB. High-glycemic index foods, hunger, and obesity: is there a connection? Nutr Rev 2000; 58: 163169.
  • 16
    Holt S, Brand J, Soveny C, Hansky J. Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses. Appetite 1992; 18: 129141.
  • 17
    Raben A. Should obese patients be counselled to follow a low-glycaemic index diet? No. Obes Rev 2002; 3: 245256.
  • 18
    Ludwig DS. Dietary glycemic index and obesity. J Nutr 2000; 130: 280S283S.
  • 19
    Bornet FR, Jardy-Gennetier AE, Jacquet N, Stowell J. Glycaemic response to foods: impact on satiety and long-term weight regulation. Appetite 2007; 49: 535553.
  • 20
    Sands AL, Leidy HJ, Hamaker BR, Maguire P, Campbell WW. Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans. Nutr Res 2009; 29: 383390.
  • 21
    Wachters-Hagedoorn RE, Priebe MG, Heimweg JA et al. The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men. J Nutr 2006; 136: 15111516.
  • 22
    Granfeldt Y, Liljeberg H, Drews A, Newman R, Bjorck I. Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am J Clin Nutr 1994; 59: 10751082.
  • 23
    Rosen LA, Silva LO, Andersson UK, Holm C, Ostman EM, Bjorck IM. Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile. Nutr J 2009; 8: 42.
  • 24
    Rosen LA, Ostman EM, Bjorck IM. Effects of cereal breakfasts on postprandial glucose, appetite regulation and voluntary energy intake at a subsequent standardized lunch; focusing on rye products. Nutr J 2011; 10: 7.
  • 25
    Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB. High glycemic index foods, overeating, and obesity. Pediatrics 1999; 103: E26.
  • 26
    Warren JM, Henry CJ, Simonite V. Low glycemic index breakfasts and reduced food intake in preadolescent children. Pediatrics 2003; 112: e414.
  • 27
    Wolever TM, Leung J, Vuksan V, Jenkins AL. Day-to-day variation in glycemic response elicited by white bread is not related to variation in satiety in humans. Appetite 2009; 52: 654658.
  • 28
    Leathwood P, Pollet P. Effects of slow release carbohydrates in the form of bean flakes on the evolution of hunger and satiety in man. Appetite 1988; 10: 111.
  • 29
    Haber GB, Heaton KW, Murphy D, Burroughs LF. Depletion and disruption of dietary fibre. Effects on satiety, plasma-glucose, and serum-insulin. Lancet 1977; 2: 679682.
  • 30
    Wolever TM, Nuttall FQ, Lee R et al. Prediction of the relative blood glucose response of mixed meals using the white bread glycemic index. Diabetes Care 1985; 8: 418428.
  • 31
    Wolever TM, Brand-Miller JC, Abernethy J et al. Measuring the glycemic index of foods: interlaboratory study. Am J Clin Nutr 2008; 87: 247S257S.
  • 32
    Peters HPF, Ravestein P, van der Hijden HTWM, Boers HM, Mela DJ. Effect of carbohydrate digestibility on appetite and its relationship to postprandial blood glucose and insulin levels. Eur J Clin Nutr 2011; 65: 4754.
  • 33
    Flint A, Gregersen NT, Gluud LL et al. Associations between postprandial insulin and blood glucose responses, appetite sensations and energy intake in normal weight and overweight individuals: a meta-analysis of test meal studies. Br J Nutr 2007; 98: 1725.
  • 34
    Lavin JH, Wittert G, Sun WM, Horowitz M, Morley JE, Read NW. Appetite regulation by carbohydrate: role of blood glucose and gastrointestinal hormones. Am J Physiol 1996; 271: E209E214.
  • 35
    Porte D Jr, Baskin DG, Schwartz MW. Leptin and insulin action in the central nervous system. Nutr Rev 2002; 60: S20S29.
  • 36
    Flint A, Moller BK, Raben A et al. Glycemic and insulinemic responses as determinants of appetite in humans. Am J Clin Nutr 2006; 84: 13651373.
  • 37
    Chapman IM, Goble EA, Wittert GA, Morley JE, Horowitz M. Effect of intravenous glucose and euglycemic insulin infusions on short-term appetite and food intake. Am J Physiol 1998; 274: R596R603.
  • 38
    Raben A, Astrup A. Leptin is influenced both by predisposition to obesity and diet composition. Int J Obes Relat Metab Disord 2000; 24: 450459.
  • 39
    Bouche C, Rizkalla SW, Luo J et al. Five-week, low-glycemic index diet decreases total fat mass and improves plasma lipid profile in moderately overweight nondiabetic men. Diabetes Care 2002; 25: 822828.
  • 40
    Brynes AE, Mark EC, Ghatei MA et al. A randomised four-intervention crossover study investigating the effect of carbohydrates on daytime profiles of insulin, glucose, non-esterified fatty acids and triacylglycerols in middle-aged men. Br J Nutr 2003; 89: 207218.
  • 41
    Sloth B, Krog-Mikkelsen I, Flint A et al. No difference in body weight decrease between a low-glycemic-index and a high-glycemic-index diet but reduced LDL cholesterol after 10-wk ad libitum intake of the low-glycemic-index diet. Am J Clin Nutr 2004; 80: 337347.
  • 42
    Raben A, Macdonald I, Astrup A. Replacement of dietary fat by sucrose or starch: effects on 14 d ad libitum energy intake, energy expenditure and body weight in formerly obese and never-obese subjects. Int J Obes Relat Metab Disord 1997; 21: 846859.
  • 43
    Alfenas RC, Mattes RD. Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans. Diabetes Care 2005; 28: 21232129.
  • 44
    McMillan-Price J, Petocz P, Atkinson F et al. Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults: a randomized controlled trial. Arch Intern Med 2006; 166: 14661475.
  • 45
    Wolever TM, Mehling C. Long-term effect of varying the source or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol, and free fatty acid concentrations in subjects with impaired glucose tolerance. Am J Clin Nutr 2003; 77: 612621.
  • 46
    Thomas D, Elliot EJ, Baur L. Low glycaemic index or low-glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev 2007; (3): CD005105.
  • 47
    Ebbeling CB, Leidig MM, Sinclair KB, Hangen JP, Ludwig DS. A reduced-glycemic load diet in the treatment of adolescent obesity. Arch Pediatr Adolesc Med 2003; 157: 773779.
  • 48
    Ebbeling CB, Leidig MM, Sinclair KB, Seger-Shippee LG, Feldman HA, Ludwig DS. Effects of an ad libitum low-glycemic load diet on cardiovascular disease risk factors in obese young adults. Am J Clin Nutr 2005; 81: 976982.
  • 49
    Slabber M, Barnard HC, Kuyl JM, Dannhauser A, Schall R. Effects of a low-insulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females. Am J Clin Nutr 1994; 60: 4853.
  • 50
    Hare-Bruun H, Nielsen BM, Grau K, Oxlund AL, Heitmann BL. Should glycemic index and glycemic load be considered in dietary recommendations? Nutr Rev 2008; 66: 569590.
  • 51
    Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health – a systematic review and meta-analysis: the database, study characteristics, and macronutrient intakes. Am J Clin Nutr 2008; 87: 223S236S.
  • 52
    Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health – a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr 2008; 87: 258S268S.
  • 53
    Pawlak DB, Ebbeling CB, Ludwig DS. Should obese patients be counselled to follow a low-glycaemic index diet? Yes. Obes Rev 2002; 3: 235243.
  • 54
    Frost G, Wilding J, Beecham J. Dietary advice based on the glycaemic index improves dietary profile and metabolic control in type 2 diabetic patients. Diabet Med 1994; 11: 397401.
  • 55
    Gilbertson HR, Brand-Miller JC, Thorburn AW, Evans S, Chondros P, Werther GA. The effect of flexible low glycemic index dietary advice versus measured carbohydrate exchange diets on glycemic control in children with type 1 diabetes. Diabetes Care 2001; 24: 11371143.
  • 56
    Aston LM, Stokes CS, Jebb SA. No effect of a diet with a reduced glycaemic index on satiety, energy intake and body weight in overweight and obese women. Int J Obes (Lond) 2008; 32: 160165.
  • 57
    Bellisle F, Dalix AM, De Assis MA et al. Motivational effects of 12-week moderately restrictive diets with or without special attention to the Glycaemic Index of foods. Br J Nutr 2007; 97: 790798.
  • 58
    Das SK, Gilhooly CH, Golden JK et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am J Clin Nutr 2007; 85: 10231030.
  • 59
    de Rougemont A, Normand S, Nazare JA et al. Beneficial effects of a 5-week low-glycaemic index regimen on weight control and cardiovascular risk factors in overweight non-diabetic subjects. Br J Nutr 2007; 98: 12881298.
  • 60
    Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, Ludwig DS. Effects of a low-glycemic load vs. low-fat diet in obese young adults: a randomized trial. JAMA 2007; 297: 20922102.
  • 61
    Maki KC, Rains TM, Kaden VN, Raneri KR, Davidson MH. Effects of a reduced-glycemic-load diet on body weight, body composition, and cardiovascular disease risk markers in overweight and obese adults. Am J Clin Nutr 2007; 85: 724734.
  • 62
    Sichieri R, Moura AS, Genelhu V, Hu F, Willett WC. An 18-mo randomized trial of a low-glycemic-index diet and weight change in Brazilian women. Am J Clin Nutr 2007; 86: 707713.
  • 63
    Van Baak MA, Astrup A. Consumption of sugars and body weight. Obes Rev 2009; 1: 923.
  • 64
    Saris WH. DiOGenes: an integrated multidisciplinary approach to the obesity problem in Europe. Nutr Bull 2005; 30: 188193.
  • 65
    Larsen TM, Dalskov S, van Baak M et al. The Diet, Obesity and Genes (Diogenes) Dietary Study in eight European countries – a comprehensive design for long-term intervention. Obes Rev 2010; 11: 7691.
  • 66
    Moore CS, Lindroos AK, Lindroos AK et al. Dietary strategy to manipulate ad libitum macronutrient intake, and glycaemic index, across eight European countries in the Diogenes Study. Obes Rev 2009; 11: 6775.
  • 67
    Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev 2001; 59: 129139.
  • 68
    Slavin JL. Dietary fiber and body weight. Nutrition 2005; 21: 411418.
  • 69
    Collier G, O'Dea K. The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. Am J Clin Nutr 1983; 37: 941944.
  • 70
    Brand-Miller JC, Colagiuri S, Gan ST. Insulin sensitivity predicts glycemia after a protein load. Metabolism 2000; 49: 15.
  • 71
    Nuttall FQ, Mooradian AD, Gannon MC, Billington C, Krezowski P. Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care 1984; 7: 465470.
  • 72
    Nuttall FQ, Gannon MC. Metabolic response of people with type 2 diabetes to a high protein diet. Nutr Metab (Lond) 2004; 1: 6.
  • 73
    Feinle C, O'Donovan D, Doran S et al. Effects of fat digestion on appetite, APD motility, and gut hormones in response to duodenal fat infusion in humans. Am J Physiol Gastrointest Liver Physiol 2003; 284: G798G807.
  • 74
    Collier GR, Greenberg GR, Wolever TM, Jenkins DJ. The acute effect of fat on insulin secretion. J Clin Endocrinol Metab 1988; 66: 323326.
  • 75
    Moghaddam E, Vogt JA, Wolever TM. The effects of fat and protein on glycemic responses in nondiabetic humans vary with waist circumference, fasting plasma insulin, and dietary fiber intake. J Nutr 2006; 136: 25062511.
  • 76
    Isken F, Klaus S, Petzke KJ, Loddenkemper C, Pfeiffer AFH, Weickert MO. Impairment of fat oxidation under high vs. low glycemic index diet occurs prior to the development of an obese phenotype. Am J Physiol Endocrinol Metab 2009; 298: E287E295.
  • 77
    Pawlak DB, Kushner JA, Ludwig DS. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet 2004; 364: 778785.
  • 78
    Scribner KB, Pawlak DB, Aubin CM, Majzoub JA, Ludwig DS. Long-term effects of dietary glycemic index on adiposity, energy metabolism, and physical activity in mice. Am J Physiol Endocrinol Metab 2008; 295: E1126E1131.
  • 79
    van Can JG, Ijzerman TH, van Loon LJ, Brouns F, Blaak EE. Reduced glycaemic and insulinaemic responses following isomaltulose ingestion: implications for postprandial substrate use. Br J Nutr 2009; 102: 14081413.
  • 80
    Stevenson EJ, Thelwall PE, Thomas K, Smith F, Brand-Miller J, Trenell MI. Dietary glycemic index influences lipid oxidation but not muscle or liver glycogen oxidation during exercise. Am J Physiol Endocrinol Metab 2009; 296: E1140E1147.
  • 81
    Zurlo F, Lillioja S, Esposito-Del PA et al. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol 1990; 259: E650E657.
  • 82
    Flatt JP. Carbohydrate balance and body-weight regulation. Proc Nutr Soc 1996; 55: 449465.
  • 83
    Leonhardt M, Langhans W. Fatty acid oxidation and control of food intake. Physiol Behav 2004; 83: 645651.
  • 84
    Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101: 515520.
  • 85
    Larsen PJ, Vrang N, Tang-Christensen M. Central pre-proglucagon derived peptides: opportunities for treatment of obesity. Curr Pharm Des 2003; 9: 13731382.
  • 86
    Naslund E, Gryback P, Backman L et al. Distal small bowel hormones: correlation with fasting antroduodenal motility and gastric emptying. Dig Dis Sci 1998; 43: 945952.
  • 87
    Turton MD, O'Shea D, Gunn I et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379: 6972.
  • 88
    Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 2009; 150: 16801687.
  • 89
    Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 1993; 138: 159166.
  • 90
    Verdich C, Flint A, Gutzwiller JP et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001; 86: 43824389.
  • 91
    Buse JB, Drucker DJ, Taylor KL et al. DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks: diabetes care. Diabetes Care 2010; 33: 12551261.
  • 92
    Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004; 27: 26282635.
  • 93
    DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005; 28: 10921100.
  • 94
    Drucker DJ, Buse JB, Taylor K et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008; 372: 12401250.
  • 95
    Kendall DM, Riddle MC, Rosenstock J et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005; 28: 10831091.
  • 96
    Klonoff DC, Buse JB, Nielsen LL et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 2008; 24: 275286.
  • 97
    Buse JB, Sesti G, Schmidt WE et al. Switching to once-daily liraglutide from twice-daily exenatide further improves glycemic control in patients with type 2 diabetes using oral agents. Diabetes Care 2010; 33: 13001303.
  • 98
    Garber A, Henry R, Ratner R et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 2009; 373: 473481.
  • 99
    Marre M, Shaw J, Brandle M et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med 2009; 26: 268278.
  • 100
    Nauck M, Frid A, Hermansen K et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 2009; 32: 8490.
  • 101
    Russell-Jones D, Vaag A, Schmitz O et al. Liraglutide vs. insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia 2009; 52: 20462055.
  • 102
    Zinman B, Gerich J, Buse JB et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 2009; 32: 12241230.
  • 103
    Rosenstock J, Reusch J, Bush M, Yang F, Stewart M. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care 2009; 32: 18801886.
  • 104
    Bergenstal R, Forti A, Chiasson J et al. Once weekly taspoglutide, a human glp-1 analog, is superior to sitagliptin in improving glycemic control and weight loss in patients with type 2 diabetes (T2D): results from the T-emerge 4 trial. Diabetes 2010; 59: 58-OR.
  • 105
    Hansotia T, Maida A, Flock G et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Invest 2007; 117: 143152.
  • 106
    Miyawaki K, Yamada Y, Ban N et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002; 8: 738742.
  • 107
    Asmar M, Simonsen L, Madsbad S, Stallknecht B, Holst JJ, Bulow J. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 2010; 59: 21602163.
  • 108
    Asmar M, Tangaa W, Madsbad S et al. On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans. Am J Physiol Endocrinol Metab 2010; 298: E614E621.
  • 109
    Vilsboll T, Krarup T, Sonne J et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 2003; 88: 27062713.
  • 110
    Nauck MA, Homberger E, Siegel EG et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986; 63: 492498.
  • 111
    Bagger JI, Knop FK, Lund A, Vestergaard H, Holst JJ, Vilsboll T. Impaired Regulation of the Incretin Effect in Patients with Type 2 Diabetes. J Clin Endocrinol Metab 2011; 96: 737745.
  • 112
    Nicolaus M, Brodl J, Linke R, Woerle HJ, Goke B, Schirra J. Endogenous GLP-1 regulates postprandial glycemia in humans: relative contributions of insulin, glucagon, and gastric emptying. J Clin Endocrinol Metab 2011; 96: 229236.
  • 113
    Nilsson AC, Ostman EM, Granfeldt Y, Bjorck IM. Effect of cereal test breakfasts differing in glycemic index and content of indigestible carbohydrates on daylong glucose tolerance in healthy subjects. Am J Clin Nutr 2008; 87: 645654.
  • 114
    Calbet JA, Holst JJ. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr 2004; 43: 127139.
  • 115
    Hermansen K, Hansen B, Jacobsen R et al. Effects of soy supplementation on blood lipids and arterial function in hypercholesterolaemic subjects. Eur J Clin Nutr 2005; 59: 843850.
  • 116
    Thomsen C, Rasmussen O, Lousen T et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 1999; 69: 11351143.
  • 117
    Thomsen C, Storm H, Holst JJ, Hermansen K. Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am J Clin Nutr 2003; 77: 605611.
  • 118
    Dumoulin V, Moro F, Barcelo A, Dakka T, Cuber JC. Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileum. Endocrinology 1998; 139: 37803786.
  • 119
    Reimann F. Molecular mechanisms underlying nutrient detection by incretin-secreting cells. Int Dairy J 2010; 20: 236242.
  • 120
    Parker HE, Reimann F, Gribble FM. Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert Rev Mol Med 2010; 12: e1.
  • 121
    Kendall DM, Kim D, Maggs D. Incretin mimetics and dipeptidyl peptidase-IV inhibitors: a review of emerging therapies for type 2 diabetes. Diabetes Technol Ther 2006; 8: 385396.
  • 122
    Dye L, Blundell J. Functional foods: psychological and behavioural functions. Br J Nutr 2002; 88(Suppl. 2): S187S211.
  • 123
    Hodge AM, English DR, O'Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004; 27: 27012706.
  • 124
    Dickinson S, Brand-Miller J. Glycemic index, postprandial glycemia and cardiovascular disease. Curr Opin Lipidol 2005; 16: 6975.
  • 125
    Silvera SA, Jain M, Howe GR, Miller AB, Rohan TE. Dietary carbohydrates and breast cancer risk: a prospective study of the roles of overall glycemic index and glycemic load. Int J Cancer 2005; 114: 653658.
  • 126
    Frost G, Leeds A, Trew G, Margara R, Dornhorst A. Insulin sensitivity in women at risk of coronary heart disease and the effect of a low glycemic diet. Metabolism 1998; 47: 12451251.
  • 127
    Rizkalla SW, Bellisle F, Slama G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br J Nutr 2002; 88(Suppl. 3): S255S262.
  • 128
    Ludwig DS. Dietary glycemic index and the regulation of body weight. Lipids 2003; 38: 117121.
  • 129
    Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 2002; 287: 24142423.
  • 130
    EFSA. Opinions of the Panel on dietetic products, nutrition and allergies (NDA). 2010.
  • 131
    Bonora E, Calcaterra F, Lombardi S et al. Plasma glucose levels throughout the day and HbA(1c) interrelationships in type 2 diabetes: implications for treatment and monitoring of metabolic control. Diabetes Care 2001; 24: 20232029.
  • 132
    Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care 2003; 26: 881885.
  • 133
    Borg R, Kuenen JC, Carstensen B et al. HbA(1c) and mean blood glucose show stronger associations with cardiovascular disease risk factors than do postprandial glycaemia or glucose variability in persons with diabetes: the A1C-Derived Average Glucose (ADAG) study. Diabetologia 2011; 54: 6972.
  • 134
    Raz I, Wilson PW, Strojek K et al. Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care 2009; 32: 381386.
  • 135
    Vakkilainen J, Mero N, Schweizer A, Foley JE, Taskinen MR. Effects of nateglinide and glibenclamide on postprandial lipid and glucose metabolism in type 2 diabetes. Diabetes Metab Res Rev 2002; 18: 484490.
  • 136
    The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 1995; 44: 968983.
  • 137
    The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996; 45: 12891298.
  • 138
    Alssema M, Schindhelm RK, Dekker JM et al. Postprandial glucose and not triglyceride concentrations are associated with carotid intima media thickness in women with normal glucose metabolism: the Hoorn prandial study. Atherosclerosis 2008; 196: 712719.
  • 139
    Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M. Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. J Thromb Haemost 2006; 4: 10031010.
  • 140
    Gerich JE. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med 2003; 163: 13061316.
  • 141
    Tushuizen ME, Diamant M, Heine RJ. Postprandial dysmetabolism and cardiovascular disease in type 2 diabetes. Postgrad Med J 2005; 81: 16.
  • 142
    Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440: 944948.
  • 143
    Kempf K, Rose B, Herder C, Kleophas U, Martin S, Kolb H. Inflammation in metabolic syndrome and type 2 diabetes: impact of dietary glucose. Ann N Y Acad Sci 2006; 1084: 3048.
  • 144
    Dandona P, Mohanty P, Ghanim H et al. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J Clin Endocrinol Metab 2001; 86: 355362.
  • 145
    Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 2000; 85: 29702973.
  • 146
    Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J. High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr 2008; 87: 11881193.
  • 147
    Ceriello A, Quagliaro L, Piconi L et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 2004; 53: 701710.
  • 148
    Esposito K, Nappo F, Marfella R et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 2002; 106: 20672072.
  • 149
    Straczkowski M, Dzienis-Straczkowska S, Stepien A, Kowalska I, Szelachowska M, Kinalska I. Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-alpha system. J Clin Endocrinol Metab 2002; 87: 46024606.
  • 150
    Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Szelachowska M, Kinalska I. Plasma interleukin 8 concentrations in obese subjects with impaired glucose tolerance. Cardiovasc Diabetol 2003; 2: 5.
  • 151
    Ceriello A, Bortolotti N, Motz E et al. Meal-induced oxidative stress and low-density lipoprotein oxidation in diabetes: the possible role of hyperglycemia. Metabolism 1999; 48: 15031508.
  • 152
    Schindhelm RK, Alssema M, Scheffer PG et al. Fasting and postprandial glycoxidative and lipoxidative stress are increased in women with type 2 diabetes. Diabetes Care 2007; 30: 17891794.
  • 153
    Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 2005; 54: 17.
  • 154
    Kempf K, Rose B, Herder C et al. The metabolic syndrome sensitizes leukocytes for glucose-induced immune gene expression. J Mol Med 2007; 85: 389396.
  • 155
    Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH. Glucose variability; does it matter? Endocr Rev 2010; 31: 171182.
  • 156
    Ceriello A, Esposito K, Piconi L et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008; 57: 13491354.
  • 157
    Monnier L, Colette C, Owens DR. Glycemic variability: the third component of the dysglycemia in diabetes. Is it important? How to measure it? J Diabetes Sci Technol 2008; 2: 10941100.
  • 158
    Monnier L, Mas E, Ginet C et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006; 295: 16811687.
  • 159
    Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D. Acute hyperglycemia induces an oxidative stress in healthy subjects. J Clin Invest 2001; 108: 635636.
  • 160
    Wentholt IM, Kulik W, Michels RP, Hoekstra JB, DeVries JH. Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes. Diabetologia 2008; 51: 183190.
  • 161
    Siegelaar SE. No relationship between glucose variability and oxidative stress in type 2 diabetic patients. Program of the 45th Annual meeting of the European Association for the Study of Diabetes, Vienna 2009 (Abstract 179). 2009.
  • 162
    Siegelaar SE, Kulik W, van Lenthe H, Mukherjee R, Hoekstra JB, DeVries JH. A randomized clinical trial comparing the effect of basal insulin and inhaled mealtime insulin on glucose variability and oxidative stress. Diabetes Obes Metab 2009; 11: 709714.
  • 163
    Kallio P, Kolehmainen M, Laaksonen DE et al. Inflammation markers are modulated by responses to diets differing in postprandial insulin responses in individuals with the metabolic syndrome. Am J Clin Nutr 2008; 87: 14971503.
  • 164
    Ceriello A, Quagliaro L, D'Amico M et al. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes 2002; 51: 10761082.
  • 165
    Mohan IK, Das UN. Effect of L-arginine-nitric oxide system on chemical-induced diabetes mellitus. Free Radic Biol Med 1998; 25: 757765.
  • 166
    Williams SB, Goldfine AB, Timimi FK et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 1998; 97: 16951701.
  • 167
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23: 599622.
  • 168
    Caballero B. Vitamin E improves the action of insulin. Nutr Rev 1993; 51: 339340.
  • 169
    Jacob S, Ruus P, Hermann R et al. Oral administration of RAC-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. Free Radic Biol Med 1999; 27: 309314.
  • 170
    Giugliano D, Marfella R, Verrazzo G et al. The vascular effects of L-Arginine in humans. The role of endogenous insulin. J Clin Invest 1997; 99: 433438.
  • 171
    Price KD, Price CS, Reynolds RD. Hyperglycemia-induced ascorbic acid deficiency promotes endothelial dysfunction and the development of atherosclerosis. Atherosclerosis 2001; 158: 112.
  • 172
    Evans JL. Antioxidants: do they have a role in the treatment of insulin resistance? Indian J Med Res 2007; 125: 355372.
  • 173
    Azcutia V, bu-Taha M, Romacho T et al. Inflammation determines the pro-adhesive properties of high extracellular d-glucose in human endothelial cells in vitro and rat microvessels in vivo. PLoS ONE 2010; 5: e10091.
  • 174
    Quagliaro L, Piconi L, Assaloni R et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 2005; 183: 259267.
  • 175
    Azuma K, Kawamori R, Toyofuku Y et al. Repetitive fluctuations in blood glucose enhance monocyte adhesion to the endothelium of rat thoracic aorta. Arterioscler Thromb Vasc Biol 2006; 26: 22752280.
  • 176
    Otsuka A, Azuma K, Iesaki T et al. Temporary hyperglycaemia provokes monocyte adhesion to endothelial cells in rat thoracic aorta. Diabetologia 2005; 48: 26672674.
  • 177
    Hu Y, Block G, Norkus EP, Morrow JD, Dietrich M, Hudes M. Relations of glycemic index and glycemic load with plasma oxidative stress markers. Am J Clin Nutr 2006; 84: 7076.
  • 178
    Qi L, Hu FB. Dietary glycemic load, whole grains, and systemic inflammation in diabetes: the epidemiological evidence. Curr Opin Lipidol 2007; 18: 38.
  • 179
    King DE, Egan BM, Woolson RF et al. Effect of a high-fiber diet vs. a fiber-supplemented diet on C-reactive protein level. Arch Intern Med 2007; 167: 502506.
  • 180
    Kallio P, Kolehmainen M, Laaksonen DE et al. Dietary carbohydrate modification induces alterations in gene expression in abdominal subcutaneous adipose tissue in persons with the metabolic syndrome: the FUNGENUT Study. Am J Clin Nutr 2007; 85: 14171427.
  • 181
    Cani PD, Amar J, Iglesias MA et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 17611772.
  • 182
    Ceriello A, Colagiuri S, Gerich J, Tuomilehto J. Guideline for management of postmeal glucose. Nutr Metab Cardiovasc Dis 2008; 18: S17S33.
  • 183
    Nathan DM, Buse JB, Davidson MB et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006; 29: 19631972.
  • 184
    Ceriello A, Colagiuri S. International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations. Diabet Med 2008; 25: 11511156.
  • 185
    Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 2007; 30: 263269.
  • 186
    Liu S, Manson JE, Stampfer MJ et al. Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density-lipoprotein cholesterol and fasting plasma triacylglycerols in postmenopausal women. Am J Clin Nutr 2001; 73: 560566.
  • 187
    Barclay AW, Petocz P, Millan-Price J et al. Glycemic index, glycemic load, and chronic disease risk – a meta-analysis of observational studies. Am J Clin Nutr 2008; 87: 627637.
  • 188
    Meyer KA, Kushi LH, Jacobs DR et al. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 2000; 71: 921930.
  • 189
    de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 2007; 4: e261.
  • 190
    Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 2010; 341: c4229.
  • 191
    Jiang R, Manson JE, Stampfer MJ, Liu S, Willett WC, Hu FB. Nut and peanut butter consumption and risk of type 2 diabetes in women. JAMA 2002; 288: 25542560.
  • 192
    Weickert MO, Mohlig M, Schofl C et al. Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care 2006; 29: 775780.
  • 193
    Weickert MO, Mohlig M, Koebnick C et al. Impact of cereal fibre on glucose-regulating factors. Diabetologia 2005; 48: 23432353.
  • 194
    Josse AR, Kendall CW, Augustin LS, Ellis PR, Jenkins DJ. Almonds and postprandial glycemia – a dose-response study. Metabolism 2007; 56: 400404.
  • 195
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002; 359: 20722077.
  • 196
    Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, De Grauw WJ. Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst Rev 2006; (4): CD005061.
  • 197
    Holman RR, Haffner SM, McMurray JJ et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med 2010; 362: 14631476.
  • 198
    Sanchez-Lozada LG, Le M, Segal M, Johnson RJ. How safe is fructose for persons with or without diabetes? Am J Clin Nutr 2008; 88: 11891190.
  • 199
    Laville M, Nazare JA. Diabetes, insulin resistance and sugars. Obes Rev 2009; 10(Suppl. 1): 2433.
  • 200
    Ross SW, Brand JC, Thorburn AW, Truswell AS. Glycemic index of processed wheat products. Am J Clin Nutr 1987; 46: 631635.
  • 201
    Behall KM, Hallfrisch J. Plasma glucose and insulin reduction after consumption of breads varying in amylose content. Eur J Clin Nutr 2002; 56: 913920.
  • 202
    Englyst KN, Vinoy S, Englyst HN, Lang V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br J Nutr 2003; 89: 329340.
  • 203
    Garsetti M, Vinoy S, Lang V, Holt S, Loyer S, Brand-Miller JC. The glycemic and insulinemic index of plain sweet biscuits: relationships to in vitro starch digestibility. J Am Coll Nutr 2005; 24: 441447.
  • 204
    Nazare JA, de Rougemont A, Normand S et al. Effect of postprandial modulation of glucose availability: short- and long-term analysis. Br J Nutr 2010; 103: 14611470.
  • 205
    Brynes AE, Adamson J, Dornhorst A, Frost GS. The beneficial effect of a diet with low glycaemic index on 24 h glucose profiles in healthy young people as assessed by continuous glucose monitoring. Br J Nutr 2005; 93: 179182.
  • 206
    Henry CJ, Lightowler HJ, Tydeman EA, Skeath R. Use of low-glycaemic index bread to reduce 24-h blood glucose: implications for dietary advice to non-diabetic and diabetic subjects. Int J Food Sci Nutr 2006; 57: 273278.
  • 207
    Wolever TM, Mehling C. High-carbohydrate-low-glycaemic index dietary advice improves glucose disposition index in subjects with impaired glucose tolerance. Br J Nutr 2002; 87: 477487.
  • 208
    Black RN, Spence M, McMahon RO et al. Effect of eucaloric high- and low-sucrose diets with identical macronutrient profile on insulin resistance and vascular risk: a randomized controlled trial. Diabetes 2006; 55: 35663572.
  • 209
    Ostman EM, Frid AH, Groop LC, Bjorck IM. A dietary exchange of common bread for tailored bread of low glycaemic index and rich in dietary fibre improved insulin economy in young women with impaired glucose tolerance. Eur J Clin Nutr 2006; 60: 334341.
  • 210
    Harbis A, Perdreau S, Vincent-Baudry S et al. Glycemic and insulinemic meal responses modulate postprandial hepatic and intestinal lipoprotein accumulation in obese, insulin-resistant subjects. Am J Clin Nutr 2004; 80: 896902.
  • 211
    Brunner Y, Schvartz D, Priego-Capote F, Coute Y, Sanchez JC. Glucotoxicity and pancreatic proteomics. J Proteomics 2009; 71: 576591.
  • 212
    Wajchenberg BL. Postprandial glycemia and cardiovascular disease in diabetes mellitus. Arq Bras Endocrinol Metabol 2007; 51: 212221.
  • 213
    Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010; 375: 22672277.
  • 214
    Bonnard C, Durand A, Peyrol S et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 2008; 118: 789800.
  • 215
    Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab 2005; 1: 5361.
  • 216
    Weickert MO, Pfeiffer AF. Signalling mechanisms linking hepatic glucose and lipid metabolism. Diabetologia 2006; 49: 17321741.
  • 217
    Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29: 4652.
  • 218
    Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91: 301307.
  • 219
    Vilsboll T, Krarup T, Madsbad S, Holst JJ. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia 2002; 45: 11111119.
  • 220
    Toft-Nielsen MB, Damholt MB, Madsbad S et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001; 86: 37173723.
  • 221
    Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50: 609613.
  • 222
    Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380386.
  • 223
    Meier JJ, Gallwitz B, Askenas M et al. Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide in women with a history of gestational diabetes. Diabetologia 2005; 48: 18721881.
  • 224
    Nyholm B, Walker M, Gravholt CH et al. Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of Type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia 1999; 42: 13141323.
  • 225
    Vaag AA, Holst JJ, Volund A, Beck-Nielsen HB. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM) – evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 1996; 135: 425432.
  • 226
    Vilsboll T, Knop FK, Krarup T et al. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J Clin Endocrinol Metab 2003; 88: 48974903.
  • 227
    Buse JB, Rosenstock J, Sesti G et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374: 3947.
  • 228
    Dirksen C, Hansen DL, Madsbad S et al. Postprandial diabetic glucose tolerance is normalized by gastric bypass feeding as opposed to gastric feeding and is associated with exaggerated GLP-1 secretion: a case report. Diabetes Care 2010; 33: 375377.
  • 229
    Goldfine AB, Mun EC, Devine E et al. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab 2007; 92: 46784685.
  • 230
    Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993; 16: 434444.
  • 231
    Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979; 59: 813.
  • 232
    Skyler JS, Bergenstal R, Bonow RO et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J Am Coll Cardiol 2009; 53: 298304.
  • 233
    Kuusisto J, Mykkanen L, Pyorala K, Laakso M. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1994; 43: 960967.
  • 234
    Hanefeld M, Fischer S, Julius U et al. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996; 39: 15771583.
  • 235
    Mita T, Watada H, Shimizu T et al. Nateglinide reduces carotid intima-media thickening in type 2 diabetic patients under good glycemic control. Arterioscler Thromb Vasc Biol 2007; 27: 24562462.
  • 236
    Meier JJ, Baller B, Menge BA, Gallwitz B, Schmidt WE, Nauck MA. Excess glycaemic excursions after an oral glucose tolerance test compared with a mixed meal challenge and self-measured home glucose profiles: is the OGTT a valid predictor of postprandial hyperglycaemia and vice versa? Diabetes Obes Metab 2009; 11: 213222.
  • 237
    Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol 2010; 55: 13101317.
  • 238
    Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 2004; 164: 21472155.
  • 239
    Lowe LP, Liu K, Greenland P, Metzger BE, Dyer AR, Stamler J. Diabetes, asymptomatic hyperglycemia, and 22-year mortality in black and white men. The Chicago Heart Association Detection Project in Industry Study. Diabetes Care 1997; 20: 163169.
  • 240
    Fujishima M, Kiyohara Y, Kato I et al. Diabetes and cardiovascular disease in a prospective population survey in Japan: the Hisayama Study. Diabetes 1996; 45(Suppl. 3): S14S16.
  • 241
    Park S, Barrett-Connor E, Wingard DL, Shan J, Edelstein S. GHb is a better predictor of cardiovascular disease than fasting or postchallenge plasma glucose in women without diabetes. The Rancho Bernardo Study. Diabetes Care 1996; 19: 450456.
  • 242
    Balkau B, Shipley M, Jarrett RJ et al. High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care 1998; 21: 360367.
  • 243
    Rodriguez BL, Lau N, Burchfiel CM et al. Glucose intolerance and 23-year risk of coronary heart disease and total mortality: the Honolulu Heart Program. Diabetes Care 1999; 22: 12621265.
  • 244
    Saydah SH, Miret M, Sung J, Varas C, Gause D, Brancati FL. Postchallenge hyperglycemia and mortality in a national sample of U.S. adults. Diabetes Care 2001; 24: 13971402.
  • 245
    Smith NL, Barzilay JI, Shaffer D et al. Fasting and 2-hour postchallenge serum glucose measures and risk of incident cardiovascular events in the elderly: the Cardiovascular Health Study. Arch Intern Med 2002; 28: 209216.
  • 246
    Cederberg H, Saukkonen T, Laakso M et al. Postchallenge glucose, A1C, and fasting glucose as predictors of type 2 diabetes and cardiovascular disease: a 10-year prospective cohort study. Diabetes Care 2010; 33: 20772083.
  • 247
    Ning F, Tuomilehto J, Pyorala K, Onat A, Soderberg S, Qiao Q. Cardiovascular disease mortality in Europeans in relation to fasting and 2-h plasma glucose levels within a normoglycemic range. Diabetes Care 2010; 33: 22112216.
  • 248
    Succurro E, Marini MA, Arturi F et al. Elevated one-hour post-load plasma glucose levels identifies subjects with normal glucose tolerance but early carotid atherosclerosis. Atherosclerosis 2009; 207: 245249.
  • 249
    Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 2000; 23: 18301834.
  • 250
    Nigam A, Bourassa MG, Fortier A, Guertin MC, Tardif JC. Fasting but not postprandial (postmeal) glycemia predicts the risk of death in subjects with coronary artery disease. Can J Cardiol 2007; 23: 873878.
  • 251
    Haffner SM. The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocr Rev 1998; 19: 583592.
  • 252
    Balkau B, Eschwege E. Insulin resistance: an independent risk factor for cardiovascular disease? Diabetes Obes Metab 1999; 1(Suppl. 1): S23S31.
  • 253
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983; 67: 968977.
  • 254
    Liu S, Willett WC, Stampfer MJ et al. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 2000; 71: 14551461.
  • 255
    Beulens JW, de Bruijne LM, Stolk RP et al. High dietary glycemic load and glycemic index increase risk of cardiovascular disease among middle-aged women: a population-based follow-up study. J Am Coll Cardiol 2007; 50: 1421.
  • 256
    Levitan EB, Mittleman MA, Hakansson N, Wolk A. Dietary glycemic index, dietary glycemic load, and cardiovascular disease in middle-aged and older Swedish men. Am J Clin Nutr 2007; 85: 15211526.
  • 257
    Mursu J, Virtanen JK, Rissanen TH et al. Glycemic index, glycemic load, and the risk of acute myocardial infarction in Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Nutr Metab Cardiovasc Dis 2011; 21: 144149.
  • 258
    Sieri S, Krogh V, Berrino F et al. Dietary glycemic load and index and risk of coronary heart disease in a large italian cohort: the EPICOR study. Arch Intern Med 2010; 170: 640647.
  • 259
    Riccardi G, Rivellese AA. Effects of dietary fiber and carbohydrate on glucose and lipoprotein metabolism in diabetic patients. Diabetes Care 1991; 14: 11151125.
  • 260
    Streppel MT, Arends LR, van 't Veer P, Grobbee DE, Geleijnse JM. Dietary fiber and blood pressure: a meta-analysis of randomized placebo-controlled trials. Arch Intern Med 2005; 165: 150156.
  • 261
    De Natale C, Annuzzi G, Bozzetto L et al. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients. Diabetes Care 2009; 32: 21682173.
  • 262
    Bazzano LA, He J, Ogden LG, Loria CM, Whelton PK. Dietary fiber intake and reduced risk of coronary heart disease in US men and women: the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Arch Intern Med 2003; 163: 18971904.
  • 263
    Eshak ES, Iso H, Date C et al. Dietary fiber intake is associated with reduced risk of mortality from cardiovascular disease among Japanese men and women. J Nutr 2010; 140: 14451453.
  • 264
    Wolk A, Manson JE, Stampfer MJ et al. Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. JAMA 1999; 281: 19982004.
  • 265
    Buyken AE, Toeller M, Heitkamp G et al. Glycemic index in the diet of European outpatients with type 1 diabetes: relations to glycated hemoglobin and serum lipids. Am J Clin Nutr 2001; 73: 574581.
  • 266
    Ford ES, Liu S. Glycemic index and serum high-density lipoprotein cholesterol concentration among us adults. Arch Intern Med 2001; 161: 572576.
  • 267
    McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004; 27: 538546.
  • 268
    Lau C, Faerch K, Glumer C et al. Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance: the Inter99 study. Diabetes Care 2005; 28: 13971403.
  • 269
    Liese AD, Schulz M, Fang F et al. Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the Insulin Resistance Atherosclerosis Study. Diabetes Care 2005; 28: 28322838.
  • 270
    Liljeberg H, BjÃrck I. Effects of a low-glycaemic index spaghetti meal on glucose tolerance and lipaemia at a subsequent meal in healthy subjects. Eur J Clin Nutr 2000; 54: 2428.
  • 271
    Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition 2004; 20: 669677.
  • 272
    Winnick JJ, Davis JM, Welsh RS, Carmichael MD, Murphy EA, Blackmon JA. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc 2005; 37: 306315.
  • 273
    Welsh RS, Davis JM, Burke JR, Williams HG. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exerc 2002; 34: 723731.
  • 274
    Bourrilhon C, Lepers R, Philippe M et al. Influence of protein- versus carbohydrate-enriched feedings on physiological responses during an ultraendurance climbing race. Horm Metab Res 2010; 42: 3137.
  • 275
    Karelis AD, Smith JW, Passe DH, Peronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med 2010; 40: 747763.
  • 276
    Hultman E. Dietary manipulations as an aid to preparation for competition. 1974, pp. 239265.
  • 277
    Hultman E. Liver glycogen in man: effect of different diets.and muscular exercise. 1981, pp. 143152.
  • 278
    Hultman E. Studies on metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scand J Clin Lab Invest Suppl 1967; 94: 163.
  • 279
    Newsholme EA, Leech AR. Integration of Carbohydrate and Lipid Metabolism. Biochemistry for the Medical Sciences. John Wiley & Sons: Chichester, Boston, 1990, pp. 372379.
  • 280
    Newsholme EA, Leech AR. Metabolism in Exercise. Biochemistry for the medical sciences. John Wiley & Sons: Chichester, Boston, 1983, pp. 536561.
  • 281
    Bergstrom J, Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest 1967; 19: 218228.
  • 282
    Sherman WM, Wimer GS. Insufficient dietary carbohydrate during training: does it impair athletic performance? Int J Sport Nutr 1991; 1: 2844.
  • 283
    Bergstrom J, Hultman E. The effect of exercise on muscle glycogen and electrolytes in normals. Scand J Clin Lab Invest 1966; 18: 1620.
  • 284
    Bjorntorp P. Importance of fat as a support nutrient for energy: metabolism of athletes. J Sports Sci 1991; 9 Spec No: 7176.
  • 285
    Sherman WM, Lamb DR. Nutrition and prolonged exercise. In: Lamb DR, Murray R (eds). Perspectives in Exercise Science and Sports Medicine, Vol 1. Prolonged Exercise. Benchmark Press: Indianapolis, IN, 1988, pp. 213280.
  • 286
    Newsholme EA, Start C (eds). Regulation of glycogen metabolism. In: Regulation in Metabolism. John Wiley: Chichester, 1973, pp. 146194.
  • 287
    Jeukendrup AE. Modulation of carbohydrate and fat utilization by diet, exercise and environment. Biochem Soc Trans 2003; 31: 12701273.
  • 288
    Costill DL. Carbohydrates for exercise: dietary demands for optimal performance. Int J Sports Med 1988; 9: 118.
  • 289
    Hargreaves M. Carbohydrates and exercise. J Sports Sci 1991; 9: 1828.
  • 290
    McGilvery RW. The Use of Fuels for Muscular Work. Birkhäuser Verlag: Basel, 1973, pp. 1220.
  • 291
    Maughan RJ. Effects of diet composition on the performance of high intensity exercise. In: Monod H (ed.). Nutrition et Sport. Masson: Paris, 1990, pp. 201211.
  • 292
    Vandenbogaerde TJ, Hopkins WG. Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med 2011; 41: 773792.
  • 293
    Gollnick PD. Energy metabolism and prolonged exercise. In: Lamd DR, Murray R (eds). Perspectives in Exercise Science and Sports Medicine, Vol 1. Prolonged Exercise. Benchmark Press: Indianapolis, IN, 1989, pp. 136.
  • 294
    van Loon LJ, Jeukendrup AE, Saris WH, Wagenmakers AJ. Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol 1999; 87: 14131420.
  • 295
    Stevenson EJ, Williams C, Mash LE, Phillips B, Nute ML. Influence of high-carbohydrate mixed meals with different glycemic indexes on substrate utilization during subsequent exercise in women. Am J Clin Nutr 2006; 84: 354360.
  • 296
    Phillips SM, Sproule J, Turner AP. Carbohydrate ingestion during team games exercise: current knowledge and areas for future investigation. Sports Med 2011; 41: 559585.
  • 297
    Jeukendrup AE, Gleeson M. Sport Nutrition. An Introduction to Energy Production and Performance, 2nd edn. Human Kinetics: Champaign, IL, 2010.
  • 298
    Little JP, Chilibeck PD, Ciona D, Vandenberg A, Zello GA. The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int J Sports Physiol Perform 2009; 4: 367380.
  • 299
    Donaldson CM, Perry TL, Rose MC. Glycemic index and endurance performance. Int J Sport Nutr Exerc Metab 2010; 20: 154165.
  • 300
    Achten J, Jentjens RL, Brouns F, Jeukendrup AE. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. J Nutr 2007; 137: 11431148.
  • 301
    Venables MC, Brouns F, Jeukendrup AE. Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Med Sci Sports Exerc 2008; 40: 16531659.
  • 302
    Jeukendrup AE, Wagenmakers AJ, Stegen JH, Gijsen AP, Brouns F, Saris WH. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol 1999; 276: E672E683.
  • 303
    Decombaz J, Sartori D, Arnaud MJ, Thelin AL, Schurch P, Howald H. Oxidation and metabolic effects of fructose or glucose ingested before exercise. Int J Sports Med 1985; 6: 282286.
  • 304
    Coyle EF. Carbohydrate feedings: effects on metabolism, performance and recovery. In: Brouns F, Saris WHM, Newsholme EA (eds). Advances in Nutrition and Top Sport, Med Sport Sci. Basel: Karger, 1991, pp. 114.
  • 305
    Guezennec CY, Satabin P, Duforez F, Merino D, Peronnet F, Koziet J. Oxidation of corn starch, glucose, and fructose ingested before exercise. Med Sci Sports Exerc 1989; 21: 4550.
  • 306
    Hawley JA, Dennis SC, Noakes TD. Oxidation of carbohydrate ingested during prolonged endurance exercise. Sports Med 1992; 14: 2742.
  • 307
    Mosora F, Lacroix M, Luyckx A et al. Glucose oxidation in relation to the size of the oral glucose loading dose. Metabolism 1981; 30: 11431149.
  • 308
    Pallikarakis N, Jandrain B, Pirnay F et al. Remarkable metabolic availability of oral glucose during long-duration exercise in humans. J Appl Physiol 1986; 60: 10351042.
  • 309
    Yaspelkis BB III, Ivy JL. Effect of carbohydrate supplements and water on exercise metabolism in the heat. J Appl Physiol 1991; 71: 680687.
  • 310
    Stellingwerff T, Boon H, Gijsen AP, Stegen JH, Kuipers H, van Loon LJ. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. Pflugers Arch 2007; 454: 635647.
  • 311
    Coyle EF. Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. J Sports Sci 1991; 9: 2952.
  • 312
    Febbraio MA, Keenan J, Angus DJ, Campbell SE, Garnham AP. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol 2000; 89: 18451851.
  • 313
    Wee SL, Williams C, Tsintzas K, Boobis L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol 2005; 99: 707714.
  • 314
    Brouns F. Gastric emptying as a regulatory factor in fluid uptake. Int J Sports Med 1998; 19(Suppl. 2): S125S128.
  • 315
    Brouns F, Senden J, Beckers E, Saris WH. Osmolarity does not affect the gastric emptying rate of oral rehydration solutions. JPEN J Parenter Enteral Nutr 1995; 19: 387391.
  • 316
    Saris WH, Goodpaster BH, Jeukendrup AE, Brouns F, Halliday D, Wagenmakers AJ. Exogenous carbohydrate oxidation from different carbohydrate sources during exercise. J Appl Physiol 1993; 75: 21682172.
  • 317
    Leijssen DP, Saris WH, Jeukendrup AE, Wagenmakers AJ. Oxidation of exogenous [13C]galactose and [13C]glucose during exercise. J Appl Physiol 1995; 79: 720725.
  • 318
    Massicotte D, Peronnet F, Brisson G, Bakkouch K, Hillaire-Marcel C. Oxidation of a glucose polymer during exercise: comparison with glucose and fructose. J Appl Physiol 1989; 66: 179183.
  • 319
    Murray R, Paul GL, Seifert JG, Eddy DE, Halaby GA. The effects of glucose, fructose, and sucrose ingestion during exercise. Med Sci Sports Exerc 1989; 21: 275282.
  • 320
    Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med 2000; 29: 407424.
  • 321
    Jeukendrup AE, Moseley L, Mainwaring GI, Samuels S, Perry S, Mann CH. Exogenous carbohydrate oxidation during ultraendurance exercise. J Appl Physiol 2006; 100: 11341141.
  • 322
    Jentjens RL, Achten J, Jeukendrup AE. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc 2004; 36: 15511558.
  • 323
    Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004; 96: 12771284.
  • 324
    Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc 2008; 40: 275281.
  • 325
    Jentjens RL, Wagenmakers AJ, Jeukendrup AE. Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise. J Appl Physiol 2002; 92: 15621572.
  • 326
    Wagenmakers AJ, Rehrer NJ, Brouns F, Saris WH, Halliday D. Breath 13CO2 background enrichment during exercise: diet-related differences between Europe and America. J Appl Physiol 1993; 74: 23532357.
  • 327
    Hawley JA, Dennis SC, Laidler BJ, Bosch AN, Noakes TD, Brouns F. High rates of exogenous carbohydrate oxidation from starch ingested during prolonged exercise. J Appl Physiol 1991; 71: 18011806.
  • 328
    Guezennec CY, Satabin P, Duforez F, Koziet J, Antoine JM. The role of type and structure of complex carbohydrates response to physical exercise. Int J Sports Med 1993; 14: 224231.
  • 329
    van Amelsvoort JM, Weststrate JA. Amylose-amylopectin ratio in a meal affects postprandial variables in male volunteers. Am J Clin Nutr 1992; 55: 712718.
  • 330
    Zawadzki KM, Yaspelkis BB III, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol 1992; 72: 18541859.
  • 331
    van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 2000; 72: 106111.
  • 332
    Jentjens RL, van Loon LJ, Mann CH, Wagenmakers AJ, Jeukendrup AE. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol 2001; 91: 839846.
  • 333
    Berardi JM, Price TB, Noreen EE, Lemon PW. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc 2006; 38: 11061113.
  • 334
    Cermak NM, Solheim AS, Gardner MS, Tarnopolsky MA, Gibala MJ. Muscle metabolism during exercise with carbohydrate or protein-carbohydrate ingestion. Med Sci Sports Exerc 2009; 41: 21582164.
  • 335
    Borghouts LB, Keizer HA. Exercise and insulin sensitivity: a review. Int J Sports Med 2000; 21: 112.
  • 336
    Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799806.
  • 337
    Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol (Oxf) 2008; 192: 127135.
  • 338
    Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda) 2005; 20: 260270.
  • 339
    Brouns F, Rehrer NJ, Saris WH, Beckers E, Menheere P, ten Hoor F. Effect of carbohydrate intake during warming-up on the regulation of blood glucose during exercise. Int J Sports Med 1989; 10(Suppl. 1): S68S75.
  • 340
    Brouns F, Rehrer NJ, Beckers E, Saris WH, Menheere P, ten Hoor F. Reaktive Hypoglykämie. Dtsch Z Sportmed 1991; 42: 188200.
  • 341
    Burke LM, Claassen A, Hawley JA, Noakes TD. Carbohydrate intake during prolonged cycling minimizes effect of glycemic index of preexercise meal. J Appl Physiol 1998; 85: 22202226.
  • 342
    Moseley L, Lancaster GI, Jeukendrup AE. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol 2003; 88: 453458.
  • 343
    Achten J, Jeukendrup AE. Effects of pre-exercise ingestion of carbohydrate on glycaemic and insulinaemic responses during subsequent exercise at differing intensities. Eur J Appl Physiol 2003; 88: 466471.
  • 344
    Hausswirth C, Le MY. Physiological and nutritional aspects of post-exercise recovery: specific recommendations for female athletes. Sports Med 2011; 41: 861882.
  • 345
    Bergstrom J, Hultman E. Synthesis of muscle glycogen in man after glucose and fructose infusion. Acta Med Scand 1967; 182: 93107.
  • 346
    Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med 2003; 33: 117144.
  • 347
    Brouns F, Saris WH, Beckers E et al. Metabolic changes induced by sustained exhaustive cycling and diet manipulation. Int J Sports Med 1989; 10(Suppl. 1): S49S62.
  • 348
    Lamb DR, Snyder AC, Baur TS. Muscle glycogen loading with a liquid carbohydrate supplement. Int J Sport Nutr 1991; 1: 5260.
  • 349
    Saris WH, van Erp-Baart MA, Brouns F, Westerterp KR, ten Hoor F. Study on food intake and energy expenditure during extreme sustained exercise: the Tour de France. Int J Sports Med 1989; 10(Suppl. 1): S26S31.
  • 350
    Dreher ML, Dreher CJ, Berry JW. Starch digestibility of foods: a nutritional perspective. Crit Rev Food Sci Nutr 1984; 20: 4771.
  • 351
    Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci 2004; 22: 3138.
  • 352
    Nilsson LG, Nilsson E. Overweight and cognition. Scand J Psychol 2009; 50: 660667.
  • 353
    Ruis C, Biessels GJ, Gorter KJ, van den Donk M, Kappelle LJ, Rutten GE. Cognition in the early stage of type 2 diabetes. Diabetes Care 2009; 32: 12611265.
  • 354
    Taki Y, Hashizume H, Sassa Y et al. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children. PLoS ONE 2010; 5: e15213.
  • 355
    Hoyland A, Dye L, Lawton CL. A systematic review of the effect of breakfast on the cognitive performance of children and adolescents. Nutr Res Rev 2009; 22: 220243.
  • 356
    Donohoe RT, Benton D. Cognitive functioning is susceptible to the level of blood glucose. Psychopharmacology (Berl) 1999; 145: 378385.
  • 357
    Kennedy DO, Scholey AB. Glucose administration, heart rate and cognitive performance: effects of increasing mental effort. Psychopharmacology (Berl) 2000; 149: 6371.
  • 358
    Scholey AB, Sunram-Lea SI, Greer J, Elliott J, Kennedy DO. Glucose administration prior to a divided attention task improves tracking performance but not word recognition: evidence against differential memory enhancement? Psychopharmacology (Berl) 2009; 202: 549558.
  • 359
    Sunram-Lea SI, Foster JK, Durlach P, Perez C. Glucose facilitation of cognitive performance in healthy young adults: examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels. Psychopharmacology (Berl) 2001; 157: 4654.
  • 360
    Ceriello A, Davidson J, Hanefeld M et al. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 2006; 16: 453456.
  • 361
    Granfeldt Y, Eliasson AC, Bjorck I. An examination of the possibility of lowering the glycemic index of oat and barley flakes by minimal processing. J Nutr 2000; 130: 22072214.
  • 362
    Amiel SA. Cognitive function testing in studies of acute hypoglycaemia: rights and wrongs? Diabetologia 1998; 41: 713719.
  • 363
    Fischer K, Colombani PC, Langhans W, Wenk C. Cognitive performance and its relationship with postprandial metabolic changes after ingestion of different macronutrients in the morning. Br J Nutr 2001; 85: 393405.
  • 364
    Fischer K, Colombani PC, Langhans W, Wenk C. Carbohydrate to protein ratio in food and cognitive performance in the morning. Physiol Behav 2002; 75: 411423.
  • 365
    Chen W, Novotny EJ, Zhu XH, Rothman DL, Shulman RG. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Proc Natl Acad Sci U S A 1993; 90: 98969900.
  • 366
    McNay EC, McCarty RC, Gold PE. Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem 2001; 75: 325337.
  • 367
    Convit A. Links between cognitive impairment in insulin resistance: an explanatory model. Neurobiol Aging 2005; 26(Suppl. 1): 3135.
  • 368
    Messier C. Glucose improvement of memory: a review. Eur J Pharmacol 2004; 490: 3357.
  • 369
    Seaquist ER, Damberg GS, Tkac I, Gruetter R. The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes 2001; 50: 22032209.
  • 370
    bi-Saab WM, Maggs DG, Jones T et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 2002; 22: 271279.
  • 371
    Silver IA, Erecinska M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 1994; 14: 50685076.
  • 372
    McNay EC, Gold PE. Food for thought: fluctuations in brain extracellular glucose provide insight into the mechanisms of memory modulation. Behav Cogn Neurosci Rev 2002; 1: 264280.
  • 373
    Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol Aging 2009; 30: 337352.
  • 374
    Zeevi N, Pachter J, McCullough LD, Wolfson L, Kuchel GA. The blood-brain barrier: geriatric relevance of a critical brain-body interface. J Am Geriatr Soc 2010; 58: 17491757.
  • 375
    Vasilevko V, Passos GF, Quiring D et al. Aging and cerebrovascular dysfunction: contribution of hypertension, cerebral amyloid angiopathy, and immunotherapy. Ann N Y Acad Sci 2010; 1207: 5870.
  • 376
    Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol 2002; 441: 114.
  • 377
    Lamport DJ, Lawton CL, Mansfield MW, Dye L. Impairments in glucose tolerance can have a negative impact on cognitive function: a systematic research review. Neurosci Biobehav Rev 2009; 33: 394413.
  • 378
    Banks WA, Jaspan JB, Kastin AJ. Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 1997; 18: 12571262.
  • 379
    Banks WA, Jaspan JB, Huang W, Kastin AJ. Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 1997; 18: 14231429.
  • 380
    Banks WA, Jaspan JB, Kastin AJ. Effect of diabetes mellitus on the permeability of the blood-brain barrier to insulin. Peptides 1997; 18: 15771584.
  • 381
    Strachan MW. Insulin and cognitive function. Lancet 2003; 362: 1253.
  • 382
    Zhao W, Chen H, Xu H et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 1999; 274: 3489334902.
  • 383
    Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 1998; 800: 125135.
  • 384
    Benedict C, Hallschmid M, Hatke A et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 2004; 29: 13261334.
  • 385
    Watson GS, Peskind ER, Asthana S et al. Insulin increases CSF Abeta42 levels in normal older adults. Neurology 2003; 60: 18991903.
  • 386
    Craft S, Newcomer J, Kanne S et al. Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol Aging 1996; 17: 123130.
  • 387
    Craft S, Asthana S, Cook DG et al. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer's disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 2003; 28: 809822.
  • 388
    Reger MA, Watson GS, Green PS et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 2008; 70: 440448.
  • 389
    Ryan CM, Freed MI, Rood JA, Cobitz AR, Waterhouse BR, Strachan MW. Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care 2006; 29: 345351.
  • 390
    Choeiri C, Staines W, Messier C. Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience 2002; 111: 1934.
  • 391
    Reagan LP, Rosell DR, Alves SE et al. GLUT8 glucose transporter is localized to excitatory and inhibitory neurons in the rat hippocampus. Brain Res 2002; 932: 129134.
  • 392
    Reagan LP. Insulin signaling effects on memory and mood. Curr Opin Pharmacol 2007; 7: 633637.
  • 393
    Geroldi C, Frisoni GB, Paolisso G et al. Insulin resistance in cognitive impairment: the InCHIANTI study. Arch Neurol 2005; 62: 10671072.
  • 394
    Kalmijn S, Feskens EJ, Launer LJ, Stijnen T, Kromhout D. Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men. Diabetologia 1995; 38: 10961102.
  • 395
    Vanhanen M, Koivisto K, Kuusisto J et al. Cognitive function in an elderly population with persistent impaired glucose tolerance. Diabetes Care 1998; 21: 398402.
  • 396
    Convit A, Wolf OT, Tarshish C, de Leon MJ. Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci U S A 2003; 100: 20192022.
  • 397
    Messier C, Tsiakas M, Gagnon M, Desrochers A, Awad N. Effect of age and glucoregulation on cognitive performance. Neurobiol Aging 2003; 24: 9851003.
  • 398
    Awad N, Gagnon M, Desrochers A, Tsiakas M, Messier C. Impact of peripheral glucoregulation on memory. Behav Neurosci 2002; 116: 691702.
  • 399
    Nilsson A, Radeborg K, Bjorck I. Effects of differences in postprandial glycaemia on cognitive functions in healthy middle-aged subjects. Eur J Clin Nutr 2009; 63: 113120.
  • 400
    Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 2001; 74: 270280.
  • 401
    Wesnes KA, Pincock C, Richardson D, Helm G, Hails S. Breakfast reduces declines in attention and memory over the morning in schoolchildren. Appetite 2003; 41: 329331.
  • 402
    Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med 1998; 27: 184188.
  • 403
    Pollitt E, Leibel RL, Greenfield D. Brief fasting, stress, and cognition in children. Am J Clin Nutr 1981; 34: 15261533.
  • 404
    Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002; 76: 556.
  • 405
    Ingwersen J, Defeyter MA, Kennedy DO, Wesnes KA, Scholey AB. A low glycaemic index breakfast cereal preferentially prevents children's cognitive performance from declining throughout the morning. Appetite 2007; 49: 240244.
  • 406
    Mahoney CR, Taylor HA, Kanarek RB, Samuel P. Effect of breakfast composition on cognitive processes in elementary school children. Physiol Behav 2005; 85: 635645.
  • 407
    Benton D, Maconie A, Williams C. The influence of the glycaemic load of breakfast on the behaviour of children in school. Physiol Behav 2007; 92: 717724.
  • 408
    Micha R, Rogers PJ, Nelson M. The glycaemic potency of breakfast and cognitive function in school children. Eur J Clin Nutr 2010; 64: 948957.
  • 409
    Benton D, Ruffin MP, Lassel T et al. The delivery rate of dietary carbohydrates affects cognitive performance in both rats and humans. Psychopharmacology (Berl) 2003; 166: 8690.
  • 410
    Smith MA, Foster JK. The impact of a high versus a low glycaemic index breakfast cereal meal on verbal episodic memory in healthy adolescents. Nutr Neurosci 2008; 11: 219227.
  • 411
    Dye L, Gilsenan MB, Quadt F et al. Manipulation of glycemic response with isomaltulose in a milk-based drink does not affect cognitive performance in healthy adults. Mol Nutr Food Res 2010; 54: 506515.
  • 412
    Holub I, Gostner A, Theis S et al. Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (Palatinose). Br J Nutr 2010; 103: 17301737.
  • 413
    Nabb SL, Benton D. The effect of the interaction between glucose tolerance and breakfasts varying in carbohydrate and fibre on mood and cognition. Nutr Neurosci 2006; 9: 161168.
  • 414
    Kaplan RJ, Greenwood CE, Winocur G, Wolever TM. Cognitive performance is associated with glucose regulation in healthy elderly persons and can be enhanced with glucose and dietary carbohydrates. Am J Clin Nutr 2000; 72: 825836.
  • 415
    Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008; 31: 22812283.
  • 416
    Nilsson A, Radeborg K, Bjorck I. The effects of the postprandial glycaemic profile on cognitive functions in healthy middle aged subjects. In press.
  • 417
    Papanikolaou Y, Palmer H, Binns MA, Jenkins DJ, Greenwood CE. Better cognitive performance following a low-glycaemic-index compared with a high-glycaemic-index carbohydrate meal in adults with type 2 diabetes. Diabetologia 2006; 49: 855862.
  • 418
    Nabb S, Benton D. The influence on cognition of the interaction between the macro-nutrient content of breakfast and glucose tolerance. Physiol Behav 2006; 87: 1623.
  • 419
    Benton D, Nabb S. Breakfasts that release glucose at different speeds interact with previous alcohol intake to influence cognition and mood before and after lunch. Behav Neurosci 2004; 118: 936943.
  • 420
    Dye L, Lluch A, Blundell JE. Macronutrients and mental performance. Nutrition 2000; 16: 10211034.
  • 421
    Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 2008; 58: 708719.
  • 422
    Dou JT, Chen M, Dufour F, Alkon DL, Zhao WQ. Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn Mem 2005; 12: 646655.
  • 423
    Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 2001; 177: 125134.
  • 424
    Gilsenan MB, de Bruin EA, Dye L. The influence of carbohydrate on cognitive performance: a critical evaluation from the perspective of glycaemic load. Br J Nutr 2009; 101: 941949.
  • 425
    Ostman EM, Liljeberg Elmstahl HG, Bjorck IM. Barley bread containing lactic acid improves glucose tolerance at a subsequent meal in healthy men and women. J Nutr 2002; 132: 11731175.
  • 426
    Liljeberg HG, Ãkerberg AK, Bjorck IM. Effect of the glycemic index and content of indigestible carbohydrates of cereal-based breakfast meals on glucose tolerance at lunch in healthy subjects. Am J Clin Nutr 1999; 69: 647655.
  • 427
    Wolever TMS, tum-Williams A, Jenkins DJA. Physiological modulation of plasma free fatty acid concentrations by diet. Metabolic implications in nondiabetic subjects. Diabetes Care 1995; 18: 962970.
  • 428
    Jenkins DJ, Wolever TM, Ocana AM et al. Metabolic effects of reducing rate of glucose ingestion by single bolus versus continuous sipping. Diabetes 1990; 39: 775781.
  • 429
    Torekov SS, Madsbad S, Holst JJ. Obesity – an indication for GLP-1 treatment? Obesity pathophysiology and GLP-1 treatment potential. Obes Rev 2011; 12: 593601.
  • 430
    Williams DL. Minireview: finding the sweet spot: peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. Endocrinology 2009; 150: 29973001.
  • 431
    Maki KC, Galant R, Samuel P et al. Effects of consuming foods containing oat beta-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. Eur J Clin Nutr 2007; 61: 786795.
  • 432
    Pereira MA, Jacobs DR Jr, Pins JJ et al. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am J Clin Nutr 2002; 75: 848855.
  • 433
    Reiser S, Hallfrisch J, Michaelis OE, Lazar FL, Martin RE, Prather ES. Isocaloric exchange of dietary starch and sucrose in humans. I. Effects on levels of fasting blood lipids. Am J Clin Nutr 1979; 32: 16591669.
  • 434
    Garcia AL, Otto B, Reich SC et al. Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur J Clin Nutr 2007; 61: 334341.
  • 435
    Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 2005; 82: 559567.
  • 436
    Juntunen KS, Laaksonen DE, Poutanen KS, Niskanen LK, Mykkanen HM. High-fiber rye bread and insulin secretion and sensitivity in healthy postmenopausal women. Am J Clin Nutr 2003; 77: 385391.
  • 437
    Philippou E, Neary NM, Chaudhri O et al. The effect of dietary glycemic index on weight maintenance in overweight subjects: a pilot study. Obesity (Silver Spring) 2009; 17: 396401.
  • 438
    Li J, Kaneko T, Qin LQ, Wang J, Wang Y. Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women. Nutrition 2003; 19: 926929.
  • 439
    Andersson A, Tengblad S, Karlstrom B et al. Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J Nutr 2007; 137: 14011407.
  • 440
    Davy BM, Davy KP, Ho RC, Beske SD, Davrath LR, Melby CL. High-fiber oat cereal compared with wheat cereal consumption favorably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. Am J Clin Nutr 2002; 76: 351358.
  • 441
    Vaccaro O, Ruth KJ, Stamler J. Relationship of postload plasma glucose to mortality with 19-yr follow-up. Comparison of one versus two plasma glucose measurements in the Chicago Peoples Gas Company Study. Diabetes Care 1992; 15: 13281334.
  • 442
    Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 1999; 22: 920924.
  • 443
    DECODE Study Group, The European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med 2001; 161: 397405.
  • 444
    Nakagami T. Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. Diabetologia 2004; 47: 385394.
  • 445
    Wild SH, Smith FB, Lee AJ, Fowkes FG. Criteria for previously undiagnosed diabetes and risk of mortality: 15-year follow-up of the Edinburgh Artery Study cohort. Diabet Med 2005; 22: 490496.
  • 446
    Pankow JS, Kwan DK, Duncan BB et al. Cardiometabolic risk in impaired fasting glucose and impaired glucose tolerance: the Atherosclerosis Risk in Communities Study. Diabetes Care 2007; 30: 325331.
  • 447
    Wang J, Ruotsalainen S, Moilanen L, Lepisto P, Laakso M, Kuusisto J. The metabolic syndrome predicts cardiovascular mortality: a 13-year follow-up study in elderly non-diabetic Finns. Eur Heart J 2007; 28: 857864.
  • 448
    Barr EL, Zimmet PZ, Welborn TA et al. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation 2007; 116: 151157.
  • 449
    Chien KL, Lee BC, Lin HJ, Hsu HC, Chen MF. Association of fasting and post-prandial hyperglycemia on the risk of cardiovascular and all-cause death among non-diabetic Chinese. Diabetes Res Clin Pract 2009; 83: e47e50.
  • 450
    Orencia AJ, Daviglus ML, Dyer AR, Walsh M, Greenland P, Stamler J. One-hour postload plasma glucose and risks of fatal coronary heart disease and stroke among nondiabetic men and women: the Chicago Heart Association Detection Project in Industry (CHA) Study. J Clin Epidemiol 1997; 50: 13691376.
  • 451
    de Vegt F, Dekker JM, Ruhe HG et al. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia 1999; 42: 926931.
  • 452
    Agewall S. Should we do an oral glucose tolerance test in hypertensive men with normal fasting blood-glucose? J Hum Hypertens 2001; 15: 7174.
  • 453
    Meigs JB, Nathan DM, D'Agostino RB Sr, Wilson PW. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. Diabetes Care 2002; 25: 18451850.
  • 454
    Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med 2002; 136: 575581.
  • 455
    Barr EL, Boyko EJ, Zimmet PZ, Wolfe R, Tonkin AM, Shaw JE. Continuous relationships between non-diabetic hyperglycaemia and both cardiovascular disease and all-cause mortality: the Australian Diabetes, Obesity, and Lifestyle (AusDiab) study. Diabetologia 2009; 52: 415424.
  • 456
    van Dam RM, Huang Z, Giovannucci E et al. Diet and basal cell carcinoma of the skin in a prospective cohort of men. Am J Clin Nutr 2000; 71: 135141.
  • 457
    Oh K, Hu FB, Cho E et al. Carbohydrate intake, glycemic index, glycemic load, and dietary fiber in relation to risk of stroke in women. Am J Epidemiol 2005; 161: 161169.
  • 458
    Levitan EB, Mittleman MA, Wolk A. Dietary glycemic index, dietary glycemic load and mortality among men with established cardiovascular disease. Eur J Clin Nutr 2009; 63: 552557.
  • 459
    Hardy DS, Hoelscher DM, Aragaki C et al. Association of glycemic index and glycemic load with risk of incident coronary heart disease among Whites and African Americans with and without type 2 diabetes: the Atherosclerosis Risk in Communities study. Ann Epidemiol 2010; 20: 610616.
  • 460
    Jakobsen MU, Dethlefsen C, Joensen AM et al. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. Am J Clin Nutr 2010; 91: 17641768.
  • 461
    Oba S, Nagata C, Nakamura K et al. Dietary glycemic index, glycemic load, and intake of carbohydrate and rice in relation to risk of mortality from stroke and its subtypes in Japanese men and women. Metabolism 2010; 59: 15741582.
  • 462
    Grau K, Tetens I, Bjornsbo KS, Heitman BL. Overall glycaemic index and glycaemic load of habitual diet and risk of heart disease. Public Health Nutr 2011; 14: 109118.
  • 463
    Li Y, Dai Q, Jackson JC, Zhang J. Overweight is associated with decreased cognitive functioning among school-age children and adolescents. Obesity (Silver Spring) 2008; 16: 18091815.
  • 464
    Pedrini MT, Niederwanger A, Kranebitter M et al. Postprandial lipaemia induces an acute decrease of insulin sensitivity in healthy men independently of plasma NEFA levels. Diabetologia 2006; 49: 16121618.