SEARCH

SEARCH BY CITATION

Keywords:

  • autoregressive moving average models;
  • information criteria;
  • time series model selection

Summary

This paper develops a new approach for order selection in autoregressive moving average models using the focused information criterion. This criterion minimizes the asymptotic mean squared error of the estimator of a parameter of interest. Simulation studies indicate that the suggested criterion is quite effective and comparable to the Akaike information criterion, the corrected Akaike information criterion and the Bayesian information criterion in autoregressive moving average order selection. The use of the focused information criterion for the simultaneous selection of regression variables and order of the error process in a linear regression model with autoregressive moving average errors is also considered.