Perception of Visual Artifacts in Image-Based Rendering of Façades



Image-based rendering (IBR) techniques allow users to create interactive 3D visualizations of scenes by taking a few snapshots. However, despite substantial progress in the field, the main barrier to better quality and more efficient IBR visualizations are several types of common, visually objectionable artifacts. These occur when scene geometry is approximate or viewpoints differ from the original shots, leading to parallax distortions, blurring, ghosting and popping errors that detract from the appearance of the scene. We argue that a better understanding of the causes and perceptual impact of these artifacts is the key to improving IBR methods. In this study we present a series of psychophysical experiments in which we systematically map out the perception of artifacts in IBR visualizations of façades as a function of the most common causes. We separate artifacts into different classes and measure how they impact visual appearance as a function of the number of images available, the geometry of the scene and the viewpoint. The results reveal a number of counter-intuitive effects in the perception of artifacts. We summarize our results in terms of practical guidelines for improving existing and future IBR techniques.