Mathematical Beauty and Perceptual Presence


Department of Philosophy
Faculty of Humanities
Utrecht University
Janskerkhof 13A
3512 BL Utrecht
The Netherlands


This paper discusses the viability of claims of mathematical beauty, asking whether mathematical beauty, if indeed there is such a thing, should be conceived of as a sub-variety of the more commonplace kinds of beauty: natural, artistic and human beauty; or, rather, as a substantive variety in its own right. If the latter, then, per the argument, it does not show itself in perceptual awareness – because perceptual presence is what characterises the commonplace kinds of beauty, and mathematical beauty is not among these. I conclude that the reference to mathematical beauty merely expresses the awe in the mathematician about the intricate complexities and simplicity of certain proofs, theorems or mathematical “objects.”