In his paper ‘Wang's Paradox’, Michael Dummett provides an argument for why strict finitism in mathematics is internally inconsistent and therefore an untenable position. Dummett's argument proceeds by making two claims: (1) Strict finitism is committed to the claim that there are sets of natural numbers which are closed under the successor operation but nonetheless have an upper bound; (2) Such a commitment is inconsistent, even by finitistic standards.

In this paper I claim that Dummett's argument fails. I question both parts of Dummett's argument, but most importantly I claim that Dummett's argument in favour of the second claim crucially relies on an implicit assumption that Dummett does not acknowledge and that the strict finitist need not accept.