Get access

Accelerated Recurrence Time Models


Yijian Huang, Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA 30322, USA.


Abstract.  For the analysis with recurrent events, we propose a generalization of the accelerated failure time model to allow for evolving covariate effects. These so-called accelerated recurrence time models postulate that the time to expected recurrence frequency, upon transformation, is a linear function of covariates with frequency-dependent coefficients. This modelling strategy shares the same spirit as quantile regression. An estimation and inference procedure is developed by generalizing the celebrated Powell's (J. Econometrics 25, 1984, 303; J. Econometrics 32, 1986, 143) estimator for censored quantile regression. Consistency and asymptotic normality of the proposed estimator are established. An algorithm is devised to attain good computational efficiency. Simulations demonstrate that this proposal performs well under practical settings. This methodology is illustrated in an application to the well-known bladder cancer study.

Get access to the full text of this article